Commentationes Mathematicae Universitatis Caroline

Peter Vojtáš
 Game properties of Boolean algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 2, 349--369

Persistent URL: http://dml.cz/dmlcz/106233

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 24,2(1983)

GAME PROPERTIES OF BOOLEAN ALGEBRAS

peter Voutas

Abstract: We deal with the transfinite game on Boolean algebras introduced by T.Jech at the Logic Colloquium 77. We prove that if the density of a Boolean algebra B is $2^{\boldsymbol{\omega}}$ and $2^{\boldsymbol{\omega}}$ is smaller than the first weakly inaccessible cardinal number, and if the player Black has a winning strategy, then B has a б-closed dense subset (this generalizes some results obtained by M. Foreman). Moreover, we investigate properties of the sets of ordinal numbers of the lengths of games for which Black, respectively White, has a winning strategy. The results suggest that the game is "cardinal-type" rather then "ordinal-type".

Key words: Games on Boolean algebras, F-clozed dense subset, cardinal characteristics of Boolean algebras.

AMS (MOS) subject classification (1970): 04A20
§ 1. Introduction. Let B be a Boolean algebra and α an ordinal number. Consider the following transfinite game $g^{I}(B, \alpha)$, introduced by $T . J e c h$ in [6], between two players White and Black. Let White and Black define a decreasing sequence

$$
\begin{equation*}
w_{0} \geqslant b_{0} \geqslant w_{1} \geqslant b_{1} \geqslant \ldots \geqslant w_{\xi} \geqslant b_{\xi} \geqslant \ldots \tag{1}
\end{equation*}
$$

of nonzero elements of B of length $\leqslant \alpha$ by taking turns defining its entries i.e, first White chooses a nonzero $w_{0} \in B$. Then Black chooses a nonzero $b_{0} \leqslant w_{0}$. Then white chooses nonzero $w_{1} \leqslant b_{0} \ldots$ The play is won by Black if the sequence (1) has nonzero lower bound and length α; else the White wins.

The game $g^{\text {II }}(B, \alpha)($ see $[5],[4])$ is defined in exactly the same way as the game $g^{I}(B, \alpha)$ except that the playex Black
 like
 dense subset, then the player Black has a winning strategy in the game $g(B, \omega)=g^{I}(B, \omega)=g^{I I}(B, \omega)$ and formulated the problem whether the inverse implication holds i.e., does the existence of a winning strategy for the Black in the game $g(B, \omega)$ imply that the algebra B has a σ-closed dense subset? The problem was investigated in [4], [5], [10] and [11]. M. Foreman ([4]) proved that if the density of a Boolean algebra B is ω_{1} and Black wins the game $g(B, \omega)$ then algebra B has a σ_{-} closed dense subset. We show in § 2 that the assumptions of this Foreman's theorem implies CH and we prove the same conclusion under the assumption that the density of B is $2^{\boldsymbol{\omega}}$. C. Gray in [5] (cited in [4]) constructed a Bonlean algebra E such that Black wins $g^{I I}\left(E, \omega_{1}\right)$ but does not win $g^{I}\left(E, \omega_{1}\right)$ and hence E has no ω_{2}-closed dense subset. We show that such a phenomenon cannot occur below ω_{1}. To be more precise, for a Boolean algebra B denote

$$
\begin{aligned}
\lambda^{I}(B) & =\left\{\alpha: \text { Black wins } g^{I}(B, \alpha)\right\} \\
3^{I}(B) & =\left\{\alpha: \text { White wins } g^{I}(B, \alpha)\right\} \\
\gamma^{I I}(B) & =\left\{\alpha: \text { Black wins } g^{I I}(B, \alpha)\right\} \\
\}^{I I}(B) & =\left\{\alpha: \text { White wins } g^{I I}(B, \alpha)\right\} .
\end{aligned}
$$

We prove that sup ψ^{I} and sup $\chi^{I I}$ are regular cardinal numbers and hence $\left(\gamma^{I I}-\psi^{I}\right) \cap \omega_{1}=\varnothing$. In $[4]$ it is proved that $\min \mathcal{Z}^{I I}(B)$ is the minimal cardinal number δ^{\sim} such that
the algobra B is not $\left(\delta^{\prime}, ., 2\right)$-distributive. We prove that $\min Z^{\perp}(B)$ is a regular cardinal number. These results show that, \&s far we are interested in the existence of the winning strategies for Black resperively white, it suffices to consider games the length of which is a curdinal number.

Furthermere, it follows that to break down the inverse implisation mentioned above we have to look for finer methods, e.5., the one introduced in [10], based on the notion of a simultaneous strategy.

Proliminaries. In this paper Boolean algebras are assumed to be complete, without atoms. Let B be a complete Boolean algebra, \mathcal{D} a zero of B. Then $B^{+}=B-\{D\}$, for $x \in B^{+} \quad B_{x}$ is the partial algebra. We say that $D \subseteq B^{+}$is a λ-closed dense subset of algebra B (we say sometimes base instead of dense suluset) if $\left(\forall x \in B^{+}\right)(\exists y \in D)(y \leqslant x)$ aud for every decreasing sequence $\left\{a_{\alpha}: \alpha<\tau\right\} \subseteq D$ of the length, $\tau<\lambda$ there is an $y \in D$ such that $y \leqslant a_{\alpha}$ for sach $\alpha<\Sigma\left(\sigma\right.$-closed means ω_{1}-closed). $d(B)$ denotes the density of $B, i . e$. $\min \left\{|X| ; X \subseteq B^{+}\right.$is a dense subset of $\left.B\right\}$. hsat (B) denotes the hereditary saturatedness, where hsat $(B)=\lessdot$ iff
$\left(\forall x \in B^{+}\right)(\forall \lambda<\kappa)\left(\right.$ there is a partition P of B_{x} with $|P| \geqslant \lambda)$. By P, Q, W we usualy denote a maximal partition of B. A system $(山)\left\{P_{\alpha} ; \alpha<\kappa\right\}$ is called a matrix, P_{α} 's are columns of Θ and $x \in P_{\alpha}$ is an element of the matrix (\otimes). For $x \in B^{+}$put
$x \wedge \wedge P=\{y \wedge x ; y \in P\} \cap B^{+} . P \ll Q$ denotes that P refines Q, i.e. $(\forall x \in P)(|x \wedge \wedge Q| \leqslant 1)$. A matrix $(\mathcal{H}$ is said to be monotone provided $\alpha<\beta$ implies $P_{\beta} \ll P_{\alpha}$. Note that if Θ is monotone, then (U@), \leqslant) forms a tree. The algebra B is said to be
(K, \ldots, λ)-distributive (see $[12],[6]$) provided for any matrix (4) $=\left\{P_{\alpha} ; \alpha<K\right\}$ there is a maximal partition P of B such that $(\forall x \in P)(\forall \alpha<\kappa)\left(\left|x \wedge \wedge P_{\alpha}\right|<\lambda\right)$ and B is called ($<\kappa, \ldots, \lambda$)-distributive if for every $\delta<\kappa$ B is ($\delta, ., \lambda$)distributive. Further B is said to be nowhere ($\mathcal{C}, ., \lambda$)-distributive if for each $x \in B^{+}$the algebra B_{x} is not ($\mathcal{C}, \ldots, \lambda$)-distributive. Recall that B is nowhere ($\mathcal{C}, \ldots, \lambda$)-distributive if there is a matrix $\Theta(\Theta)\left\{P_{\alpha} ; \alpha<K\right\}$ such that for each $x \in B^{+}$ there is some $\alpha<K$ with $\left|x \wedge \cap P_{\alpha}\right| \geqslant \lambda$. In this case we say that (H) is a matrix witnessing to the nowhere (κ, \ldots, λ)-distributivity of the algebra B_{x}.

Recall that ($K, ., 2$)-distributivity of B is equivalent to the following condition on the algebra B: For each matrix $\left\{\mathrm{P}_{\alpha}: \alpha \lll\right\}$ of B we have

$$
\bigwedge_{\alpha<k} \bigvee p_{\alpha}=V\left\{\bigwedge_{\alpha<N} f(\alpha): f \in \prod_{\alpha<\kappa} P_{\alpha}\right\}
$$

Symbol \mathcal{H}° stands for any of \hat{h}^{I} and $\mathcal{X}^{I I}$; similarly for \mathcal{Z}° and g°. The winning strategy for the player Black in the game $g^{I}(B, \alpha)$ is a function $f: \bigcup_{\beta<\alpha} \beta_{B} \rightarrow B$ such that Black wins every play in which he follows fie., each play

$$
w_{0}, f\left(w_{0}\right), w_{1}, f\left(w_{0}, w_{1}\right), \ldots, w_{\beta}, f\left(w_{0}, w_{1}, \ldots, w_{\beta}\right), \ldots
$$

is won by Black ie. $\bigcap_{\beta<\alpha} w \neq 0$. We admit that f can be defined possibly on a greater domain, egg. if $\alpha<\beta$ and σ is a winning strategy for Black in $g^{\circ}(B, \beta)$ then σ^{6} is also a winning striategy for Black in $g^{0}(B, \alpha)$. Sometimes it is more convenient to write the infinite sequence $\left\{b_{f}:\{<\alpha\}\right.$ more explicitly, -.E.,

$$
\left.\left\{b_{0}, b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{\omega}, b_{\omega+1}, \ldots, b_{\xi}, \ldots:\right\}<\alpha\right\}
$$

and an element of this sequence with double indexes $\delta_{\xi+1}+1$
we compromisely write as $b\left(\delta_{\xi+1}+1\right)$ instead of $b \delta_{\xi+1}+1^{\text {. }}$
The course of a play $w_{0} \geqslant b_{0} \geqslant w_{1} \geqslant b_{1} \geqslant \ldots \geqslant w_{\alpha} \geqslant b_{\alpha} \geqslant \ldots$ we often ilustrate by a picture like this

For unexplained notation and terminology we refer to [7].

§ 2. Partial affirmative results

Corollary 1. Assume that B is a complete Boolean algebra without atoms and Black has a winning strategy in the game $g(B, \omega)$. Then hsat $(B)>2^{\omega}$.

Proof. Let us pick an arbitrary $x \in B^{+}$and $\mathcal{\sigma}$ a winning strategy for the Black and construct a binary tree
$T=\left\{x_{f}: f \in \bigcup_{n<\omega}^{n} 2\right\} \subseteq B_{x}^{+}$such that
(i) $f f_{f} g \rightarrow x_{g} \& \sigma\left(x_{f} \Gamma_{0}, x_{f+1}, \ldots, x_{f}\right)$, and
(ii) $x_{f} \cap_{0} \wedge x_{f} \cap_{1}=0$.

Basily for any $f \in \epsilon_{2}$ the intersection $y_{f}=\bigcap_{n<\omega} x_{f f_{n}}$ is distinct from (1) and for $f \neq E$ we have $y_{f} \wedge y_{G}=\mathbb{D}$ and $y_{f} \leq x$. Hence $\operatorname{sat}\left(B_{x}\right)>2^{\omega}$.

Remark 1. As already mentioned in the introduction, M. foreman ([4]) proved that if Black wins $g(B, \omega)$ and $d(B)=\omega_{1}$, tioun B hes a $\sigma_{\text {-closed }}$ dense subset. From our Corollary we get $2^{\omega)}<\operatorname{hsat}(B) \leqslant d(B)^{+}=\omega_{2}$ and therefore $2^{\omega}=\omega_{1}$ must hold. A natural question arises; what happens if $d(B)=2^{\omega}>\omega_{1}$. In what follows we provide the answer.

Remark 2. Every Souslin algebra B is not determined. This follows from the fact that B is $\left(\lambda_{0}^{2}, \ldots, 2\right)$-distributive (i.e. White does not win $g(3, \omega)$ (see $[6]$) and hsat $(B)=\omega_{1}$ (i.e. according to our Corollary, Black does not win $g(b, \omega))$.

Definition. A matrix $\left(\mathcal{L}=\left\{p_{\alpha} ; \alpha<\kappa\right\}\right.$ of algebra B is called a base matrix of B of leneth κ if $U(4)=\bigcup\left\{p_{\alpha} ; \alpha<\kappa\right\}$ i. a base of the algebra A (i.o. a dense subset of B).

The notion of a base matrix was introduced in $[1]$ and for "strategic" constructions used in [10], [11] and [4].

Lemma 2. Assume B is nowhere ($\mathcal{C}, ., \lambda$)-distributive and $(<\kappa, ., 2)$-distributive Boolean algebra such that $d(B)=\lambda^{\lambda_{0}^{2}}$ and Black has a winning strategy in the game $g(B, \omega)$. Then B has a monotone base matrix of the length K and $\kappa \geqslant \omega_{1}$.

Proof. The proof can be obtained by a slight modification of the proofs of Lemma 6 and Theorem 7 in [11]. Hint: Take a monotone matrix (4) witnessing to the nowhere (K, \ldots, λ)-distributivity. Using the strategy for Black one can construct a λ-ary tree of the length $\chi_{0} \chi_{0}$ analogously as in Corollary 1. Now, each nenzero element of the dense subset of B of size $\lambda^{\gamma_{0}^{2}}$ intersects $\lambda^{\lambda_{0}}$ different elements of the matrix. Take a one-toone embedding of the dense subset of B into the elements of the matrix $(4$ and "close" the matrix under intersections and complements. This way we get the desired base matrix.

Foreman's construction of a σ^{\prime}-closed dense subset has two steps. First he constructs a base matrix of nonlimit length. Sevnad, from this base matrix he constructs a G-closed siense suivet. Generalizing the first step and using the second Foreman's step unchanged, we get the following.

Theorem 3. Assume that algebra B is ($K, ., 2$)-distributive and nowhere $\left(\mathcal{K}^{+}, \ldots \lambda\right)$-distributive, $d(B)=\lambda^{\chi_{0}^{2}}$ and Black wins $g(B, \omega)$. Then B has a σ-closed dense subset.

To reach the continuum we use the technique of the partitioning algebra into factors homogeneous in some cardinai characteristics (cf. Pierce [8], Bukovský [2]).

Lemma 4. For $x \in B^{+}$put $\pi(x)=K$ whenever the algebra B_{x} is $(<K, ., 2)$-distributive and nowhere ($K, \ldots, 2$)-distributive (undefined otherwise). Then
(a) $\mathscr{D}=\{x: \pi(x)$ is $\overline{d e f i n e d}\}$ is a dense subset of B,
(b) $(\forall x \in D)(\pi(x)$ is a regular cardinal number smaller or equal to the density of B).

Proof. (a) Pick some $x \in B^{+}$. Put

$$
C=\min \left\{\delta: B_{x} \text { is not }(\delta, ., 2) \text {-distributive }\right\}
$$

Then there is a matrix $\left\{p_{\alpha}: \alpha<\kappa\right\}$ such that $\bigwedge_{\alpha<\kappa} \vee p_{\alpha}=x$ and $z=V\left\{\bigwedge_{\alpha<\kappa} f(\alpha): f \in \prod_{\alpha<\kappa} P_{\alpha}\right\}<x$.
The algebra B_{x-z} is $(<K, ., 2)$-distributive and nowhere $(\mathbb{K}, ., 2)$-distributive, i.e. $x-z \leqslant x$ and $\pi(x-z)=\mathbb{C}$.
(b) The proof that $\Pi(x)$ is regular is straightforward. Assume that $d\left(B_{x}\right) \leqslant d(B)<\pi(x)$ and $\left\{u_{\alpha}: \alpha<d\left(B_{x}\right)\right\}$ is a base of B_{x}. Put $P_{\alpha}=\left\{u_{\alpha},-u_{\alpha}\right\}$. The size of matrix $\left\{P_{\alpha}: \alpha<d\left(B_{x}\right)\right\}$ is smaller than $\tilde{\sigma}(x)$ and, by the distributivity of B_{x}, there is a common refinement P. Take $x \in P$ and
a $y \in B^{+}, y<x$ (B is atomless). But, there is an element of the base u_{α} such that $u_{\alpha} \leqslant y \leq x \leqslant u_{\alpha}$. Contradiction.

Theorem 5. Assume that B is a Boolean algebra such that Black wins the game $g(B, \omega)$ and $d(B)=2^{\omega}$ and $2^{\omega}<1^{\text {st }}$ weakly inaccessible cardinal number. Then B has a $\boldsymbol{\sigma}$-closed dense subset.

Proof. Take $\mathscr{D}=\operatorname{dom}(\pi)$, the dense set from Lemma 4, and take a maximal disjoint partition P of B consisting of elements of D. Since $\pi(x)$ is regular and $\pi(x) \leqslant 2^{\omega}<1^{\text {st }}$ w.i, $\pi(x)$ is a successor cardinal number. So, far every $x \in P$ there is a \mathcal{C} such that the algebra B_{x} is
(i) ($K, ., 2$)-distributive,
(ii) nowhere ($\mathbb{C}^{+}, \ldots, 2$)-distributive,
(iii) $d\left(B_{x}\right) \leqslant 2^{\omega}$,
(iv) Black wins $g\left(B_{x}, \omega\right)$.

From Theorem 3 we get a $\boldsymbol{\sigma}$-closed dense subset of algebra B_{x} for all $x \in P$ and, henceforth, also for the algebra B.

§ 3. Some game properties of Boolean algebras

Investigations carried out in this final part are motivated by a result of c. Gray ([5]). Consider the games g^{I} and $g^{I I}$ as defined in § 1. Gray proved that there is a Boolean algebra E such that Black wins $g^{I I}\left(E, \omega_{1}\right)$ but does not win $g^{I}\left(E, \omega_{1}\right)$ and therefore algebra E does not have an ω_{2}-closed dense subset. For sets $\dot{z}^{I}, z^{I I}, z^{I}, z^{I I}$ defined in the introduction we casily get $\gamma^{I} \subseteq \gamma^{I I}$ and $z^{I I} \subseteq z^{I}$. To ilustrate the game properties of an algebra let us draw the following pictures

The diesram of the Gray's a febra E looks as follows

Since the games $g^{I}(B, \omega)$ and $g^{I I}(B, w)$ are the same, the following situation

does not occur. Our next result shows that even for α such that $\omega<\alpha<\omega_{1}$ the Gray's trick cannot be used, i.e.

a.lso cannot occur.

Theorem 6. Assume that B is a complete Boolean algebra. Then $\sup \left(\hat{\theta}^{I}(B)\right)$ and $\sup \left(\hat{i}^{I I}(B)\right)$ are regular cardinal mumbars.

Proof. In both cases it suffices to prove that if $\{d\}:\{<K\} \in \mathcal{X}^{\circ}$ is a sequence of limit ordinal numbers and $K \in \ell^{\circ}$ is a limit ordinal number, then $\sum_{\xi<K} \alpha \xi \in \mathfrak{\xi}^{\circ}$ (here Σ denotes the ordinal sum).
(a) Let 6 be a winning strategy for Black in $g^{I}(B, K)$ and $\sigma_{\xi}, \xi<K$, are the winning strategies for Black in games $g^{I}\left(B, \alpha_{\xi}\right)$. The desired strategy for the came $g^{I}\left(B, \Sigma \alpha_{\xi}\right)$ we construct "interweaving σ with σ_{ξ} ". (See also picture).

For $\xi \leqslant \kappa$, put $\delta_{\xi}=\sum_{\eta<\xi} \alpha_{\eta}$ (e.g. $\delta_{0}=0, \quad \delta_{k}=\sum_{\xi<k} \alpha_{\xi}$). We define H, the Black's strategy case by case: for $\xi<K$ and $0<\}<\alpha_{\xi}$ put (remember our convention about double indexes)

$$
b\left(\delta_{\xi}+\xi\right)=H\left(w_{0}, \ldots, w\left(\delta_{\xi}\right), w\left(\delta_{\xi}+1\right), \ldots, w\left(\delta_{\xi}+\xi\right)\right)=
$$

$$
=\sigma_{\xi}\left(w\left(\delta_{\xi}+1\right), w\left(\delta_{\xi}+2\right), \ldots, w\left(\delta_{\xi}+\xi\right)\right)
$$

and $b\left(\delta_{\xi}\right)=H\left(w_{0}, w_{1}, w_{2}, \ldots, w\left(\delta_{\xi}\right)\right)=$

$$
=\sigma\left(w_{0}, w\left(\delta_{1}\right), w\left(\delta_{2}\right), \ldots, w\left(\delta_{\xi}\right)\right)
$$

White		Black
w_{0}	$\sigma\left(w_{0}\right)$	
w_{1}	$\sigma_{0}\left(w_{1}\right)$	
$\sigma_{0}\left(w_{1}, w_{2}\right)$		

For every $\xi<R$ the sequence

$$
\left.w\left(\delta_{\xi}+1\right), b\left(\delta_{\xi}+1\right), \ldots, w\left(\delta_{\xi}+\xi\right), b\left(\delta_{\xi}+\xi\right), \ldots:\right\}<\alpha_{\xi}
$$

is a play of $g^{I}\left(B, \alpha_{\xi}\right)$ in which Black follows σ_{ξ} and hence $\wedge\left\{w_{\eta}: \eta<\delta_{\xi+1}\right\} \neq \mathbb{D}$, and so white can choose the $w\left(\delta_{\xi+1}\right)$. Moreover, the sequence

$$
w_{0}, b_{0}, w\left(\delta_{1}\right), b\left(\delta_{1}\right), \ldots, w\left(\delta_{f}\right), b\left(\delta_{f}\right), \ldots: \xi<r
$$

is a play of $g^{T}(B, K)$ in which Black uses \mathcal{G} and therefore $\bigwedge\left\{w_{\alpha}: \alpha<\delta_{k}\right\} \neq \mathbb{O}$. Hence, the defined strategy H is winning for the player Black in the game $g^{I}\left(B, \sum_{j<\kappa} \alpha_{j}\right)$.
(b) The proof for the game $g^{I I}$ is similar but we have to be more carefully on limit stages. Let $\alpha_{\xi}, \kappa, \sigma, \sigma_{\xi}, \delta_{\xi}$ be
the same as in (a) but for $g^{I I}$. Define the strategy H case by case:

$$
b_{0}=H\left(w_{0}\right)=5\left(w_{0}\right)
$$

for $0<\xi<\omega$ and $1<\xi<\alpha_{\xi}$, respectively for $\omega<\xi<R, \xi$ nonlimit and $1 \leqslant \xi<\alpha_{\xi}$, put

$$
\begin{aligned}
& \mathrm{b}\left(\delta_{f}\right)=\mathrm{H}\left(\mathrm{w}_{0}, w_{1}, \ldots, w_{\alpha}, \ldots: \alpha<\delta_{f}\right) \text { is arbitrary } \\
& \text { up to the conditions of the game } \\
& b\left(\delta_{f}+1\right)=H\left(w_{0}, w_{1}, \ldots, w\left(\delta_{f}\right)\right)= \\
& =\left(w_{0}, w\left(\delta_{1}\right), w\left(\delta_{2}\right), \ldots, w\left(\delta_{w+1}\right), \ldots, w\left(\delta_{\xi}\right)\right)= \\
& =\left(w_{0}, w\left(\delta_{1}\right), \ldots, w\left(\delta_{\eta}\right), \ldots: \eta \leqslant \xi \& \eta^{n o n 1 i m i t}\right) \\
& \left.b\left(\delta_{\xi}+\xi\right)=H\left(w_{0}, w_{1}, \ldots, w\left(\delta_{\xi}+\boldsymbol{v}\right), \ldots: v^{2}<\right\}\right)= \\
& =\sigma_{p}\left(w\left(\delta_{\xi}+1\right), \ldots, w\left(\delta_{f}+\lambda\right), \ldots: \gamma_{<}<\xi\right)
\end{aligned}
$$

for $\omega \leq \xi<x$ and $\{$ limit and $0<\}<\alpha_{\xi}$, put
$b\left(\delta_{\xi}\right)=H\left(w_{0}, w_{1}, \ldots, w_{\alpha}, \ldots: \alpha<\delta_{\xi}\right)=$
$=G\left(w_{0}, w\left(\delta_{1}\right), \ldots, w\left(\delta_{\eta}\right), \ldots: \eta \leqslant \xi \& \quad \eta\right.$ nonlimit $)$
$b\left(\delta_{\xi}+\xi\right)=H\left(w_{0}, w_{1}, \ldots, w\left(\delta_{\xi}+\nu\right), \ldots: \nu_{<} \xi\right)=$
$=\sigma_{\xi}\left(w\left(\delta_{\xi}\right), w\left(\delta_{\xi}+1\right), \ldots, w\left(\delta_{\xi}+\forall\right), \ldots: v<\xi\right)$.

White	Black
w_{0}	$6\left(w_{0}\right)$
w_{1}	$\sigma_{0}\left(w_{1}\right)$
$\sigma_{0}\left(w_{1}, w_{2}\right)$	

continued on the
next page

$$
\begin{aligned}
& \frac{\text { White }}{\text { Black }} \\
& b\left(\delta_{1}\right) \text { arbitrary } \\
& w\left(\delta_{1}\right) \\
& w\left(\delta_{1}+1\right) \\
& w\left(\delta_{1}+2\right) \\
& \sigma\left(w_{0}, w\left(\delta_{1}\right)\right)=b\left(\delta_{1}+1\right) \\
& \sigma_{1}\left(w\left(\delta_{1}+1\right)\right)=b\left(\delta_{1}+2\right) \\
& \sigma_{1}\left(w\left(\delta_{1}+1\right), w\left(\delta_{1}+2\right)\right) \\
& w\left(\delta_{\omega}\right) \\
& w\left(\delta_{\omega}+1\right) \\
& \sigma_{\omega}\left(w\left(\delta_{\omega}\right)\right)=b\left(\delta_{\omega}+1\right) \\
& \sigma_{\omega}\left(w\left(\delta_{\omega}\right), w\left(\delta_{\omega}+1\right)\right)=b\left(\delta_{\omega}+2\right) \\
& w\left(\delta_{\omega+1}\right) \\
& w\left(\delta_{\omega+1}+1\right) \\
& b\left(\delta_{\omega+1}\right) \text { arbitrary } \\
& \sigma\left(w_{0}, w\left(\delta_{1}\right), \ldots, w\left(\delta_{n}\right), \ldots, w\left(\delta_{\omega+1}\right)\right)=b\left(\delta_{\omega+1}+1\right) \\
& \sigma_{\omega+1}\left(w\left(\delta_{\omega+1}+1\right)\right)=b\left(\delta_{\omega+1}+2\right) \\
& \text { It is easy to see that for } \xi<\omega \text { or } \xi \text { nonlimit the sequence } \\
& w\left(\delta_{\xi}+1\right), b\left(\delta_{\xi}+1\right), \ldots, b\left(\delta_{\xi}+\omega\right), w\left(\delta_{\xi}+\omega\right), \ldots \\
& \ldots, b\left(\delta_{\xi}+\vartheta\right), w\left(\delta_{\xi}+\vartheta\right), \ldots: v<\alpha
\end{aligned}
$$

respootivoly for $\}>\omega$ and ξ 11mitt the soguance $w\left(\delta_{\xi}\right), b\left(\delta_{\xi}+1\right), w\left(\delta_{\xi}+1\right), b\left(\delta_{\xi}+2\right), \ldots, b\left(\delta_{\xi}+\omega\right), w\left(\delta_{\xi}+\omega\right), \ldots$ $\ldots, b\left(\delta_{\xi}+\theta\right), w\left(\delta_{\xi}+\theta\right), \ldots: \theta<\alpha_{\xi}$
1s a play of the game $g^{I I}\left(B, \alpha_{\xi}\right)$ in which Black follows σ_{ξ}.
Moreover, the sequance

$$
\begin{aligned}
& w_{0}, b 0, w\left(\delta_{1}\right), b\left(\delta_{1}+1\right), \ldots, w\left(\delta_{n}\right), b\left(\delta_{n}+1\right), \ldots \\
& \cdots, b\left(\delta_{\omega}\right), w\left(\delta_{\omega+1}\right), b\left(\delta_{\omega+1}+1\right), w\left(\delta_{\omega+2}\right), \ldots \\
& \cdots, b\left(\delta_{\xi}\right), w\left(\delta_{\xi+1}\right), b\left(\delta_{\xi+1}+1\right), w\left(\delta_{f+2}\right), \ldots: \xi<r \text { is a }
\end{aligned}
$$ play of $g^{I I}(B, K)$ and $\wedge\left\{w_{\alpha}: \alpha<\delta_{k}\right\}=\Lambda\left\{w\left(\delta_{\xi}\right): \xi<x\right\} \neq 0$. Hence H is a winning strategy for the Black in $g^{\text {II }}\left(\mathrm{B}, \sum_{f<\pi} \alpha_{\xi}\right)$.

Remark 3. As a corollary of the previous theorem we get

$$
\begin{aligned}
& k \in \&^{I} \rightarrow k^{+} \subseteq \psi^{I} \\
& k \in 甘^{\mathbb{I}} \rightarrow \kappa^{+} \subseteq \&^{I}
\end{aligned}
$$

If the algebra B has a σ-closed dense subset, then $\omega_{1} \subseteq \mathcal{X}^{I}(B) \cap \dot{X}^{I I}(B)$. But from Theorem 6 we get that
$\left(\gamma^{I I}(B)-\gamma^{I}(B)\right) \cap \omega_{1}=\varnothing$ for every Boolean algebra B. So the nonexistence of a $\sigma_{\text {-olosed dense subset cannot be proved }}$ using differences between \hat{X}^{I} and $\hat{\lambda}^{I I}$.

Now let us recall the notion of a simultaneous strategy introduced in [10]. It is our feeling, that the existence of the simultaneous strategy can be a loophole for breaking down the Joch's problem.

Definition. We say that the player Black has a simultaneous winning strategy in the game g^{I} on algebra B $\left(g^{I I}\right.$, respectively) if there is one strategy
$\sigma: \bigcup\left\{\beta_{B ;} \beta<\omega_{1}\right\} \longrightarrow B$
such that G is winning for Black in each game $g^{I}(B, \alpha)$ for
$\alpha<\omega_{1}\left(g^{I I}(B, \alpha)\right.$ for $\alpha<\omega_{1}$, respectively).
Note that if B has a $\boldsymbol{\sigma}$-closed dense subset, then there is a simultaneous strategy for g^{I} and $g^{I I}$. and if Black has simultancous winning strategy in the game g^{I} then he has simultaneous winning strategy also in the game $g^{I I}$. Hence the following problems arise:

Problem 1. Does "Black has a winning strategy in $g(B, \omega)$ " imply "There is a simultaneous winning strategy for Black in the game $g^{I I}$ on B^{n} ?
2. Does the existence of simultaneous winning
strategy in the game g^{I} imply the existence of simultaneous winning strategy in the game $g^{I I}$?

In [4] is proved that min $\left(z^{I I}(B)\right)$ is the smallest cardinal number δ for which the algebra B is not ($\mathcal{J}, ., 2$)-dietributive. For the Gray's algebra E we have $\min \left(z^{I}(E)\right)<\min \left(z^{I I}(E)\right)$ Our last theorem answers the remaining question. It shows (together with the previous results) that g^{I} is realy a "cardinaltype" game.

Theorem 7. For every Boolean algebra B,
$\min \left(Z^{I}(B)\right)$ is a regular cardinal number.
Proof. Assume that $\left\{\alpha_{\mathcal{F}}:\{<\chi\}\right.$ is a sequence of limit ordinal numbers disjoint with $Z^{I}(B)$ and let $\mathbb{C} \notin Z^{I}(B)$ is a limit ordinal number. We show that $\left.\sum_{f<r} \alpha_{\xi} \notin\right\}^{I}(B)$.

Assume on the contrary that σ is a winning strategy for the White in the game $g^{I}\left(B, \Sigma \alpha_{\xi}\right)$. First we introduce some notation. Put $\delta_{\xi}=\sum_{\langle=|} \alpha \eta$. For a sequence $\bar{b}=\left(b_{0}, b_{1}, \ldots, b_{\eta}\right.$, $\left.\ldots: \eta<\delta_{\xi}\right)$ define $\sigma[\bar{b}]$ a strategy for the white in the game
$\quad g^{I}\left(B, \alpha_{\xi}\right)$ as follows
$\quad G\left[\frac{b}{b}\right]\left(y_{0}, y_{1}, \ldots, y_{\mu}, \ldots: \mu<\nu<\alpha_{\xi}\right)=$
$=\sigma\left(b_{0}, b_{1}, \ldots . b_{\eta}, \ldots, y_{0}, y_{1}: y_{2}, \ldots, y_{\mu}, \ldots: \eta_{i} \leq \delta_{\xi} g_{\mu}<\eta\right)$
Assume that ρ is some strategy for the White in the game $g^{I}\left(B, \alpha_{\xi}\right)$. As $\left.\alpha_{\xi} \notin\right\}^{I}(B)$, there is a sequence $\left\{b_{0}: b_{1}, \ldots, b_{\eta}\right.$. ,...: $\left.\eta<\alpha_{f}\right\}$ of entries of Black such that the following sequences $\rho(\phi), b_{0}, \rho\left(b_{0}\right), b_{1}, \rho\left(b_{0}, b_{1}\right), b_{2}, \ldots, \rho\left(b_{0}, b_{1}, \ldots, b_{\mu}, \ldots: \alpha^{\mu<\eta}\right)$. $, b_{\eta}, \ldots: \eta^{<\alpha_{\xi}}$
is a play of $g^{I}\left(B, \alpha_{j}\right)$ which white does not win. Using $A C$, for each $\rho \mathrm{fix}$ one such a sequence and denote it $\bar{b}[\rho]$. That is, for every ρ there is a sequence $\bar{b}[\rho]$ of Black's entries such that ρ fails against this play. To show that, G fails in $g^{I}\left(B, \Sigma \alpha_{\xi}\right)$, we shall iterate these two operations (egg. $\rho[\bar{b}[G]])$. For two (or more) sequences b_{0}, b_{1}, \ldots the conchtonation is denoted $b_{0} \sim_{b_{1}}$ (respectively $b_{0} \frown_{b_{1}} \cap \ldots$).

Construction. There is a strategy H such that for every descending sequence $\left\{x_{\alpha}: \alpha<\kappa\right\}$ of nonzero elements of the algebra B there are sequences $\left\{\overline{\mathrm{b}} \xi:\{<\kappa\}\right.$ and $\left\{\mathcal{G}_{\xi}: \xi<r\right\}$ such that
(1) $\overline{\mathrm{b}}_{\mathcal{q}}=\left\{\mathrm{b}_{\eta} \frac{f}{\eta}: \eta<\alpha_{\mathcal{G}}\right\}$ is a descending sequence of nonzero
(2) σ_{ξ} is a strategy for white in the game $g^{I}\left(B, \alpha_{\xi}\right)$ and H is a strategy for white in the game $g^{I}(B, K)$
(3) $\sigma_{0}=\sigma\left[\left\{x_{0}\right\}\right]$
(4) $\bar{b}_{0}=\bar{b}\left[\sigma_{0}\right]=\bar{b}\left[\sigma\left[\left\{x_{0}\right\}\right]\right]$
(5) $\left.\sigma_{\xi}=\sigma\left[\left\{x_{0}\right\}^{n} \bar{b}_{0}{ }^{n}\left\{x_{1}\right\}^{n} \bar{b}_{1} \wedge \ldots{ }^{n} \bar{b}_{q}{ }^{n}\left\{x_{\eta+1}\right\}^{n} \ldots x^{n}\right\}: \eta<\xi\right]$
(6) $\bar{b}_{\xi}=\bar{b}\left[\sigma_{\xi}\right]$ depends only on σ and $\left\{x_{\eta} ; \eta \leq \xi\right\}$
(7) $\mathrm{H}(\phi)=\boldsymbol{\sigma}(\phi)$
$\left.H\left(x_{0}, x_{1}, \ldots, x_{\eta}, \ldots . \sum_{\eta}\right\}<\kappa\right)=$
$=\sigma\left(\left\{x_{0}\right\}^{n} \bar{b}_{0}^{n}\left\{x_{1}\right\}^{\wedge \bar{b}_{1}}{ }^{n} \ldots n\left\{x_{\eta}\right\}^{n} \bar{b}_{\eta}^{n} \ldots: \eta<r\right)$.

The construction is straightforward. Note that H is a
strategy for white in $g^{I}(B, R)$. The value of $H\left(\left\{x_{\eta}: \eta<\{<K\}\right)\right.$
depends only on the sequence $\left\{x_{\alpha}: \alpha<\kappa\right\}$. But $\kappa \notin z^{I}(B)$. Then $\overline{\mathbf{y}}=\overline{\mathrm{b}}[\mathrm{H}]=\left\{\mathrm{y}_{\xi}: \xi<x\right\}$ is a sequence such that
$\left.\mathrm{H}(\phi), \mathrm{y}_{0}, \mathrm{H}\left(\mathrm{y}_{0}\right), \mathrm{y}_{1}, \ldots, \mathrm{H}\left(\mathrm{y}_{0}, \ldots, \mathrm{y}_{\eta}, \ldots: \eta<\xi\right), \mathrm{y} \xi, \ldots:\right\}<\kappa$

From the construction (for this particular \bar{y}) there is a sequence $\left\{\bar{b}_{j}:\{<x\}\right.$ such that the sequence
$\left.\left\{y_{0}\right\}^{n} \bar{b}_{0} \cap\left\{y_{1}\right\}^{\sim} \vec{b}_{1} \cap \ldots{ }^{n}\left\{y_{\xi}\right\}^{\wedge} \bar{b}_{j}^{n} \ldots:\right\}<k$ iss a sequence of Black's entries in the game $g^{I}\left(B, \sum_{\mathcal{K}<\mathcal{K}} \alpha_{\xi}\right)$ in which white uses $\mathfrak{\sigma}$. Contradiction.

Remark 4. If B is a Souslin algebra or the nondetermined algebra constructed by T. Sech in [6], then
$\sup \mathcal{H}^{I}(B)=\sup \mathcal{\gamma}^{I I}(B)=\omega \quad$ and
$\min z^{I}(B)=\min z^{I I}(B)=\omega_{1}$.
The diagram of B looks like

Remark 5 (Problems). We don know whether for each algebra B is

$$
\begin{aligned}
& \left|\left(\mathcal{R}^{I I}(B)-\mathcal{\chi}^{I}(B)\right) \cap \operatorname{card}\right| \leq 1 \\
& 1\left(z^{I}(B)-z^{I I}(B)\right) \cap \operatorname{Card} \mid \leq 1
\end{aligned}
$$

A.Hajnal asked whether

$$
\mid\left(z^{I(B)} \cap \chi^{I I}(B)\right) \cap \text { Card } \mid \leq 1
$$

is true.
Is there an algebra B such that $\min \left(z^{I I}(B)\right)=\lambda_{\omega+1}^{\lambda}$ and $\min \left(z^{I}(B)\right)<\min \left(z^{I I}(B)\right)$ (and hence $\min \left(Z^{I}(B)\right)=\lambda_{n}^{\lambda}$ for some $n<\omega$?

Does for any four regular cardinal numbers $\nu_{1}, \nu_{2}, \eta_{1}, \eta_{2}$
such that

exist an Boolean algebra such that $\sup \left(\gamma^{I}(B)\right)=\gamma_{1}$,
$\sup \left(\mathcal{H}^{I I}(B)\right)=\nu_{2}, \min \left(z^{I}(B)\right)=\eta_{1}$ and $\min \left(z^{I I}(B)\right)=\eta_{2}{ }^{?}$
The last couple of problems concerns the algebra
$B_{0}=P(\omega) / f_{i n}$. We define
$K_{c}=\min \left\{|F| ; F \subseteq B_{0}^{+}\right.$is centered and $\left.\Lambda F=0\right\}$
$\mathcal{K}_{t}=\min \left\{|T| ; T \subseteq B_{0}^{+}\right.$is a tower and $\left.\Lambda T=\Phi\right\}$
$K=\min \left\{\delta ; B_{0}\right.$ is not $(\delta, \ldots, 2)$-distributive $\}$
$\nu_{1}=\sup \left(\gamma^{I}\left(B_{0}\right)\right) \quad \gamma_{2}=\sup \left(\gamma^{I I}\left(B_{0}\right)\right)$
$\eta_{1}=\min \left(z^{I}\left(B_{0}\right)\right)$.
Easily $\eta_{2}=\min \left(z^{I I}\left(B_{0}\right)\right)=C$.
Parameters K_{c}, K_{t} and K were investigated by B. Balcar, J. Pebant and P. Simon in [1]. P.L. Dordal ([3]) proved Con (ZFC $+\mathbb{C}_{c}<\mathbb{C}$).
A.Szymanski and H.X.Zhou proved in [9] that $K_{c}=\omega_{1}$ implies $k_{t}=\omega_{1}$. This result together with Dordal's metatheorem gives $\operatorname{Con}\left(K_{t}<\pi+z F C\right)$. The following diagram shows the relations between these characteristics of the algebra $P(\omega) / f i n \cdot$

$$
\kappa_{c} \leqslant r_{t} \leqslant \nu_{1} \leqslant \eta_{1} N \quad x=\eta_{2}
$$

We ask: Which inequalities can be consistently sharp?
Prove or disprove $\operatorname{Con}\left(\mathrm{ZFC}+\eta_{1}<\nu_{2}\right)$.
Is there a simultaneous winning strategy for Black in the game g^{I} on $P(\omega) /$ fin of the length $\nu_{1}\left(g^{I I}\right.$ and ν_{2} respeclively)?

```
R\bullet1•r•n@\bullet*
```

[1] B. BLLOAR, J.PRIANT, P.SIMON: The space of ultrafiltere on N oovered by nowhere dense sets. Pund. Math. 110 (1980), 11-24.
[2] L. BuKOVSKI: ∇-model and distributivity in Boolean aleobree. Comment. Math. Univ. Carolinge 9 (1968), 595-612.
[3] P.L.DORDAL: Independence reaults concerning some combinatorial properties of the continuum. Ph.D.Thesis, Harvard University, Cambridse, Mass. 1982.
[4] M. FORBMN: Cames played on Boolean algebras. Preprint.
[5] C.GRAY: Iterated forcing from the atrategic point of viow. Ph.D.Thesis, Berkeley 1980.
[6] T.JBCH: A Eame theoretic property of Boolean algebras. Logic Colloquium ' 77 (A.Mac Intyre ot al., eds.) p. 135144, North Holland Publ. Co. Amsterdam 1978.
[7] T.JECH: Sot theory. Aondemic Preas, Now York 1978.
[8] R.S.PIERCE: Models over commatative ringe. Mem. Amer. Math. Soc. no 70, Providence, R.I., AMS 1967.
[9] A.SZYMANSKI, H.X.ZHOU: to appear in General Topology and ite Relations to Modern Analyais and Algebra V. (Proo. Fifth Prague Topological Symp. 1981). Heldermann Verlag, Borlin 1982.
[10] P.VOJTKS: A tranafinite Boolean game and a generalization of Kripke's ambedding theorem. Ganeral Topology and its Relations to Modern Analysis and Algebra V. (Proc. Fifth Prague Topological Symp. 1981). Heldermann Verlag, Berlin 1982, 663-668.

[11] P.voJTís: Simultaneous atrategies and Boolean ganea of uncountable length. (Proc. 10th Vinter Sohool on Abstraot Analysis, Smi 1982). Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 2, 1982, 293-297.
 [12] P.VOP前KA, P.HKJEK: The theory of semisets. Acadeaic Prague and North Holland, Amstexdam 1972.

Mathematical Institute
Slovak Academy of Solences
Karpateká 5, 04001 Kosice
Czechoslovakia
(Oblatum 2.3.1983)

