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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

24,3 (1983)

SOME NOWHERE DENSELY GENERATED TOPOLOGICAL
PROPERTIES
Robert L. BLAIR

Abstract: [2¢,A) -compactness is characterized in such

a way that the following result of Mills and Wattel is an im-
mediate consequence:

%) [9ee,2 ]-compactness is nowhere densely generated in the
class of Tlfspaces without isolated points. (The special case
of (k) for compactness is due to Kat&tov.) In addition, cha-
racterizations of ot~-closed-completeness, o -compactness, and
pseudo-( <, )-compactness are obtained with consequences si-
milar to (% ). Among these consequences, for example: Closed-
completeness is nowhere densely generated in the class of Tl-

spaces without closed discrete subsets of Ulem-measurable car-
dinality.

Key words and phrases: Nowhere densely generated,l,A 1 -
compact, «-closed-complete, o -compact, pseudo-(oc ,se)-comp~
act, relatively pseudo-( o¢,se )-compact. closed-complete, real-
compact, screenable, meesurable cardinal.

Classification: Primary 54D20, 54D30, 54D60
Secondary 54A25, 54B05

0. Introduction. As in [MW], a property ¢ is nowhere
densely generated in a class C of topological spaces if, for
every X¢ C, X has property ® whenever every nowhere dense

closed subset of X has property ® . For example:

O.1l. Theorem (Mills and Wattel [MW, Theorem 2])). For all
infinite cardinals s and A ,[2¢,A ] ~compactness is nowhere

densely generated in the class of Tl—spaces without isolated
points.
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0.2. Theorem (Blair [Bl, 41). Realcompactness is nowhere
densely generated in the class of normal Tl-spaces without

closed screenable subsets of Ulam-measurable cardinality.
(For definitions of terms used here, see §1-3 below.)

Theorem 0.1 generalizes the following earlier result of
Kat&tov: Compactness is nowhere densely generated in the class
of Tl- spaces without isolated points [K). (Katdtov s theorem
is reproved in [ VW, 2.4].) For other results closely related
to 0.1 and 0.2, see Mills and Wattel [ MW], van Douwen LvD,
11.1), van Douwen, Tall, and Weiss [vDTW], and [Bl). I em in-
debted to Eric van Douwen for calling [K] and MWl to my atten-
tion.

The main results of this paper can be summarized as fol-
lows:

(i) 1.2 is a characterization of [e¢,A ) —~compactness that
(a) quickly yields 0.1, (b) requires no separation hypothe-
sis, and (¢c) has a proof much simpler than that of 0.1 in
{MWl. (In connection with (c), see the remarks of [vD,] (in
which the present author s initials are erroneously printed
as "D.E.").)

(ii) 2.4 is a characterization of o« -compactness (in
the sense of Herrlich [ Hel) in the class of normal T,-spaces
that implies 0.2 and cardinal generalizations thereof, and it
is also a characterization of & -closed-completeness that im-
plies both the Katétov theorem cited above (see 2.8) and the
following: Closed-completeness (= a-realcompactness [D]) is
nowhere densely generated in the class of Tl-apaces without
closed screenable subsets of Ulam-measurable cardinality (see

2.5).
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(1ii) 3.1 is a characterization of pseudo-(« , #t)~compact-
ness that implies, for example, the following: If X is ’1‘1 and
without isolated points, and i1f every nowhere dense subset of
X is relatively pseudocompact in X, then X is pseudocompact
(see 3.4). (Thus pseudocompactness is, in a strong sense, no-
where densely generated in the class of Tl-spaces without iso-
lated points.) '

The same basic technique (namely, an appropriate choice
of a meximal family of pairwise disjoint open sets) underlies
the proof of each of the three main results 1.2, 2.4, and 3.1.

Cardinals are initial ordinals. The smallest infinite car-
dinal is denoted by @ , and if o« 1s a cardinal, then act de-
notes the smallest cardinal (3 such that o < {3 . The power
set of a set X is denoted by P(X). If AcX and Uec P(X), we
set U(A) ={UeU :Un A% @},

No separation properties are assumed unless explicitly
mentioned.

I am indebted to M. HuSek for suggestions for improving

the exposition of an earlier version of this paper,

1. [2¢,A ] -compactness. For infinite cardinals s and 4,
a space X is [s,A)-compact if for every open cover U of X
with |Ul4 A , there exists ¥e U with |Vl<cse and X = v ¥,
(Thus [e,e* | P X)] -compact = compact, [@¥ &*|P (X)|]-com-
pact = Lindeldf, and [w,w ] -compact = countably compact,)
Obviously [e,A 1 -compactness is closed-hereditary, and X is
trivially [se,A ]l-compact if 2 > 4 .

We shall say that a subset D of a space X is screenable

(resp. strongly screenable) in X if there exists a pairwise
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disjoint family (Gx)xeD of open subsets of X such that xe G,
(resp. cl{x}c G,) for every x&D (cf. [B1]); and that D is
almost closed in X if u{cli{xi:xe D} is closed in X. Clearly
every strongly screenable subset of X is screenable, and every
closed subset of X is almost closed; and if X is T,, then
screenable = strongly screenable and closed = almost closed.

The following is also obvious:

1.1, Lemma. If D is e strongly screenable subset of X,

then u{clix}:x <D} is the sum of the family (cl{x}) ..

The main result of this section is as follows:

1.2, Theorem, Let % and A be infinite cardinals with
¢ A , If X is & topological space, then the following
are equivalent:

(1) X is [9e,A 1-compact.

(2) Every almost closed, strongly screenable subset of
X has cardinality <o , and every nowhere dense closed subset

of X is[9,A l-compact.

Proof. (1) =+ (2): If D is an almost closed, strongly
screenable subset of X, then u{clixi:xe D} is closed in X
and hence [oe, A ] -compact. Since 3¢ & A , it follows from 1.1
that |D| <%¢ . The remaining assertion of (2) is clear.

(2) =» (1); Let U be an open cover of X with |Uls A,
and let Cj, be a maximal family of pairwise disjoint open sub-
sets of X such that, for every G ¢ 4 , Gc Ug for some U; €
€ U . The maximality of G implies that X - uG is nowhere
dense in X and hence [2,A ] -compact. Thus there exists U c U

such that l’lfl<aeandX-u9c;;'U. Let P =X -u?” and
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G* = & (P), For each G ¢ G* , choose x,6 Fn G and let

D = {Xg:G € G*} and A =u{clixgi:G 6 G*? . Since cl AcPcuG
angd g is pairwise disjoint, it follows easily that A is clos-
ed in X. Moreover, for each G € G we have PR G = Fn (X -
-u(G-16G})), so PAG is closed in X. Thus for each G & g™,
cl{xGS: PnGc G, and we conclude that D is almost closed and *
sirongly soreenable. Hence [G*I= IDl< e . Let W= Vv {Us
16 6 G*} and note that %W c U and [Wl<ve. Since X -~ vV =
=PcuG*c v{Ug:G € G*§, W covers X and the proof is com-

plCt‘o u

A space X is essentially Tl [WW] 4if for each x,y€X, eit-
her cl{xin cliy} = @ or cli{x} = cliyj.

1.3. Corollary., Let s and A be infinite cardinals with
® £ A , If every nowhere dense closed subset of X is [s,A] -
compact, then X - u{int cl{x}:xeXt{ is [3¢,A 1 -compact, and the
converse holds if X is essentially Tl.

Proof. Let ¥ =X = u{int clixi:xe X} and assume first
that every nowhere dense closed subset of X is [, A ] -compact.
Let Dc Y be almost closed and strongly screenable in Y, Then
there exists a pairwise disjoint family (Gx)xeD of open sub-
sets of Y such that clixic Gy for every xe D, and the set A =
= y{cl{x¥:xc D} is closed in Y and hence also in X. Suppose
there is a nonempty open set U in X with Uc A. Then Un clix} 4
4@ for some x& D, and then xeUn GycAnGy = cli{x}. Note also
that Un G, is open in X, and hence xcint clix}. But then x4Y,
a contradiction. Thus A is nowhere dense in X and hence (2,21~
compact. Since 2 £ A , 1.1 implies that |D| < 2¢ . Moreover,

every nowhere dense closed subset of Y is also nowhere dense
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and closed in X and therefore [35,3.3 ~compact, Hence Y is
Lee,2 1-compact by 1.2,

Assume next that X is essentially Ty, that Y is [ae,R] -
compact, and that E is a nowhere dense closed subset of X. If
there exists yeE - ¥, then y €int cl{x} for some x€X, Since
X is essentially T,, we then have P +int cli{xtc clix} =
= cliy} c E, & contradiction, Thus EcY and hence E is [2,2 1]~
compact. O

l.4. Remarks. (a) Let 3¢ and A be as in 1,3 and let X
be '.El. Then, by 1.3, the set of nonisolated points of X is
[ee,A ] -compact if and only if every nowhere dense closed sub-
set of X is [a,A ] -compact. The theorem of Mills and Wattel
(0.1) is an immediate comsequence.

(b) It is worth remarking that the proof of 1.2 can be
adapted to give a very brief direct proof of 0.l1l. For this
purpose we first note the following well-known (and easily pro-
ved) fact:

1.5 Proposition. If D is a discrete subspace of a Tl"
space X, and if no point of D is isolated in X, then D is no-

where dense in X,

Proof of 0.1, Assume that X is Tl and without isolated
points, tl;at % £ , and that every nowhere dense closed sub-
get of X is [%,A ] ~compact. Let 4 be an open cover of X with
{4l £ A, and choose G ,V,F, @*,D, and W precisely as in
the proof of (2) = (1) of 1.2. Since X is T, and cl DcP <
cu(., D is closed in X; and D is nowhere dense in X by 1.5.
Thug D is a [2,A ] -compact discrete space, so ID| < 2. As

before, |Wl<2, Wc U , and W covers X, and thus X is
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2,4 1-compact. O

We define the cellular extent ce(X) of e space X as fol-

lows: ce(X) = wesupi(Dl: D is an almost closed, strongly
screenable subset of X}{. (The special case of ce(X) for -
spaces is defined in [Bl, 8(d)]. Clearly ce(X)< minfe(X),
A(X)t, where ¢(X) is the cellularity of X [J] and A(X) is °
the discreteness character of X [Ho, §3]. As noted im [Bl,
8(d)], this inequality can be strict.)

As an immediate consequence of 1.2 we have:

1.6, Corollary. If A is an infinite cardinal and if e-
very nowhere dense closed subset of X is [co(x)*,Al ~-compact,

then X is [oc(x)"',).]-compact.

l.7. Corollary. If A is an infinite cardinal and if e-
very nowhere dense subset of X is [c(X)"’,A}-compact, then X
is hereditarily [c(x)*',a ]l-compact.

Proof, It follows from 1.2 that every open subset of X
is [c(X)+,l]-compact. As a consequence, X is hereditarily
[e(x)*, A]-compact. O

The special case of 1.7 for which ¢(X) =@ 1is noted by
van Douwen, Tall and Weiss in [vDTW, p. 142] (cf. [MW, Corol-
lary 3(b)1).

Por infinite cardinels s and A with 8¢ & A , we shall
call X iso- [ee,A ] ~compact if every [ 2¢,%] ~compact closed sub-
set of X is [s,A ] -compact. (Thus iso- [w,w .| P (X)1l-compact =
= isocompact [Bal, i.e. every countably compact closed subset
of X is compact.)

The following is an easy consequence of 1.2:
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1.8. Corollary. For all infinite cardinals s¢ and A with
% <A , iso-[2e,d ] ~compactness is nowhere densely generated
in the class of all topological spaces.

.

2, ot =closed-completeness and o -compactiness. Let X be a

topological space and « an infinite cardinal. If Yc¢ P(X), ¢
has the o —intersection property if nA * @ for every A c ¢

with |Al<o , and & 1is fixed (resp. free) if n ¥ & § (resp.
nY = @). By a closed ultrafilter (resp. z-ultrafilter) on X

we m.an & maximal filter in the lattice of closed subsets
(resp. zero-sets) of X; and a space (resp. a Tychonoff space)

X is o =cloged-complete (resp. o« —compact (in the sense of Herr-

lich [Hel)) if every closed ultrafilter (resp. z-ultrafilter)
on X with the o -intersection property is fixed. (Thus @-clo-
sed-complete = compact, w-compact = compact Hausdorff, wt-
closed~-complete = closed-complete (= a~realcompact 1D]), and
w*t-compact = realcompact.)

A cardinal s¢ is measurable if there exisis a free ultra-
filter on (the discrete space) 22 with the w®-intersection pro-
perty [ON,, p. 186]. For « e&n infinite cardinal, m(ec) will
denote the smallest measurable cardinal such that o« £ m(oc)
(if such a cardinal exists; see the discussion in [CNZ' Pe
203] and [J, A6.11). Cleerly m(w) = w.

The main result of this section is 2.4, For its proof we
need the following three lemmas. . The easy proof of 2.1 is o-
mittedy for 2.2 see e.g. LHul or [R, 2.41.)

2.1l. Lemma., Every closed subsgpace of an « -closed-com-
plete (resp. o« -compact) space is o -closed-complete (resp.

o« -compact).
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2.2. Lemma. A discrete space D is o¢-compact if and on-
1y if IDl<m(eC).

2.3. Lemma., Let A be closed in X and let & be & closed
ultrafilter (resp. z-ultrafilter) on X with the oc-intersec~
tion property. If A meets every member of ¥ (resp., and X is
normal), then %’ = {FnanA:F ¢ ¥} is a closed ultrafilter (resp..

z-ultrafilter) on A with the &« -intersection property.

Proof., Consider the case in whick X is normal, % is =a
z-ultrafilter on X with the «-intersection property, and A
meets every member of 4° . Since A is C*-embedded in X, it
follows readily that %’ is & z-ultrafilter on A, Suppose that
B <« and that (F§)§<f’ is a family of :members of % , If
n§<p (anA) = @, then, by normelity, there is a zero-ser C
in X with ni‘stc 2 and Zn A = #. Then for every Pe 9 we
have g+ Fn( nBPPi)anZ, and hence Z € ¢ . But then Zn
AnA % @, a contradiction, and we conclude that %’has the « -
intersection property. The other case of the lemme can be ve-

rified in a straightforward way. [J

2.4, Theorem, If « is an infinite cardinal and if X is
T, (resp. normal Tl), then the following are equivelent:

(1) X is e -closed-complete (resp. oc-compact).

(2) Every closed screenable subset of X has cardinali-
ty < m{x ), and every nowhere dense closed subset of X is

o ~closed-complete (resp. & -compac.).

Proof. (1) =p (2): This is én immediate consequence of
2.1 and 2.2,

(2) =p (1): Assume that X is Ty (resp. normal '1‘1), let
% be a closed ultrafilter (resp. z-ultrafilter) on X with
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the oc-intersection property, and suppose that n% = #. Let G
be a maximal family of pairwise disjoint open subsets of X
such that, for every G € G , GA? = § for some F ¢ & . Since
NF = @, the maximality of G implies that X - vG 1is nowhe-
re dense in X and therefore o¢ -closed-complete (resp. o -comp-
act)e If X - v @ meets every member of ¥ , then, by 2.3,
F'={Pn(X - vG ):F ¢ F} is a closed ultrafilter (resp. z-
ultrafilter) on X - v G with the « -intersection mroperty.
But then # % n F’c n %, a contradiction, and we conclude that
F*c 0 G for some P¥e & . Let G*= G (P¥), choose x56 F*n G
for each G € G* , and let D = {x;:G € G*} . Since ¢l Dc F*c
cuvG , G is pairwise disjoint, and X 1is T;, 1t follows that
D is closed in X. Since D is clearly screenable, [Di<m(oc).

Next, for each ¥ c G , u# is a zero-set in ug— , 80
P*A(uR) is a zero-set in P¥, Thus P*n (U ¥ ) is closed in
X, and if X is normal (so that F* is C*-embedded in X), then
PnA(ud) is a zero-set in X, Thus we have:

(%) Por every ¥ €G s P*An(u) is closed (resp. a

zero-set) in X,

We ghow next that § = {# cG*:P*an (L ¥H) s §F} 15 an ul-
trafilter on the discrete space G* with the « -intersection
property: Clearly # € & . Suppose that 8 < o and that
“"E’im is a family of members of § . Since G is pairwise
disjoint, Ngep (uaeg) - u(nf“, 383). Then F*n(u(n:‘ﬁaes))
= Ngep (F"n(uﬂt))*ﬁ. and hence ni‘{,ﬂ!-bﬂ. Next, it fol-
lows from (%) that if ¥ € § and X c g* with 3 c X ,then
¥ @« @ . Pinally, suppose that % c G* with % ¢ & . By
(%), F*FA(u¥ ) is closed (resp. a zero-set) in X and not in
%, 0 PaF*a(uvd) =@ for some F¢ ¥ . Since P c u G ,
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it then follows that Pn F*c F¥n (v (G*-3)). By (%), ¢*-
- #ed , end thus § is, in fact, an ultrafilter on G¥ with
the ol-intersection property.

Now [G*]= [Dl<m(eC), 80 by 2,2 there exists G &€ n P .
Since G € G , we have GNP = @ for some F ¢ &€ , and hence
Pn?*c?*n(u((}*-i(}})). Then, by (%), G*~- 16} & $ and
hence G c(}* - {G}, a contradiction. The proof is now comple- .
te. O

Since a cardinal % is Ulam-nonmeasurable if and only if

e < m(wt) [N, 8.31], we have:

2.5, Corollary, If X is T; (resp. normal T;), then the

following are equivalent:

(1) X is closed-complete (resp. realcompact).

(2) Every closed screensble subset of X has Ulam-nonmea-
surable cardinality, and every nowhere dense closed subset of
X is closed-complete (resp. realcompact).

The realcompact case of 2.5 (see 0.2 above) is proved by
a different technique in [Bl, 4]. As noted in [Bl, 8(¢)], the
hypothesis of normality cannot be omitted in 2.5.

2,6, Corollary. If X is a Tychonoff cb-gpace [M), then

the following are equivalent:
(1) X is realcompact,
(2) Every closed screenable subset of X hag Ulam-nonmea-

surable cardinality, and every nowhere dense closed subset of
X is real-compact.
Proof., In view of 2.5, we need only note that every re-

alcompact space is closed-complete [D. 1.16], every closed sub-
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space of a cb-gpace is cb (M1, and every Tychonoff closed-com-

plete cb-gpace is realcompact [D, 1.10]. OO

2.7« Corollary. If o is an infinite cardinal and if X
is Tl (resp. normal '1‘1), then the following are equivalent:

(1) The set of nonisolated points of X is o¢-closed-com-
plete (resp. o -compact),

(2) Every nowhere dense closed subset of X is of~closed-
complete (resp. o -compact).

Moreover, if (2) holds and the set of isolated points of

X has cardinality <m(ec), then X is o -closed-complete (resp.
ec-c':ompa.ct).

Proof. This follows readily from 2.1, 2.2, 2.4 and 1.5. O

2.8, Remark. Ve note that the & -closed-complete (= com-

pact) case of 2.7 implies (once again) the Katétov theorem cit-
ed in the Introduction,

3. Pseudo-( o, )-compactness., Let o« and 2¢ be infini-
te cardinals with %6 <« and let Yc X. We shall say that Y is
relatively pseudo-{ o, )=-compact in X if for every locally < a¢
family U of open subsets of X, 1{UnY:Ue U3 l<cc; and that ¥
is relatively pseudo-oc—compact in X if Y is relatively pseudo-
(%, w)-compact in X. The space X is pseudo-( «, 3¢)-compact
(resp. pseudo-oc—=compact) if X is relatively pseudo-(ec, 9¢)-
compect (resp. relatively pseudo-o~compact) in itself (see
[CNll). (Thus Y is relatively pseudocompact in X (resp, X is
pseudocompact) if and only if Y is relatively pseudo- €O-comp-

act in X (resp. X is pseudo- @ -compact).)
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2.1, Theorem., Let of and s be infinite cardinals with
2 £« o If either « is regular or % < o , then the follow-
ing are equivalent:

(1) X is pseudo-(« , ®)-compact.

(2) Every screenable subset of X is relatively pseudo-
(. ,?¢)-compact in X.

Proof. (1) => (2): This implication is trivial.

(2) = (1): If there is a locally <« st family % of non-
empty open subsets of X with |%Ul= & , choose § maximal (re-
lative to inclusion) such that $ is an injective function,

G = dom @ 1is a pairwise disjoint family of nonempty open sub-
sets of X, and, for every G € G , Gc®d(G)e U and [U(G)l<
< % . Then G is locally <2t and (by meximality of § ) % =

= %U(uG). It follows that IUl= Z{IU(G): G ¢ G§ , s0 the
hypotheses on o imply that |Gl =1Ul. For each G € G , pick

Xy € G. Clearly {xG:G € g,} is screenable, but not relatively
pseudo-( «, % )-compact, in X, O

3.2. Remark, The word "relatively" cannot be omitted in
the implication (1) = (2) of 3.1: The ordinal svwace ' is

pseudocompact, but ¢ is screenable in w' ana nonpseudocompact.

3.3. Corollary., If o is an infinite cardinal and if eve-
ry screenable subgset of X is relatively pseudo- oc -compact in

X, then X is pseudo- oc ~compact.

Various other corollaries cen of course be deduced., For

example, from 3.1 and 1.5 we have:

3.4. Corollary. If X is T, and without isolated points,

and if every nowhere dense subset of X is yeslatively pseudo-
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compact in X, then X is pseudocompact,

[ Ba)

[B1]
LcE;)

10N,

[vD,]

(vD,]

{vDTW]

{D]

{Hel

[Hol
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