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COMMENTATIONES MATHEMATICAE UNtVERSITATIS CAROLINAE 

2B.1 (1987) 

SOME REMARKS ON REVEALNESS 
A. TZOUVARAS 

Abstract: We present a further classification of classes 
according to their degree of revealness, which is uniformly in­
duced by schemas of normal f o r m u l a s . 

Key words: Alternative Set Theory, .revealed class, fully 
revealed class, normal f o r m u l a . 

Classification: 03E70 

Revealed and, especially, fully revealed classes are, in a 

sense, good approximations of set-definable c l a s s e s . . Every such 

class includes an abundance of infinite sets and behaves well 

with respect to prolongation, countable meets, set-definable map­

pings etc 

In an attempt to explore deeper the concept, we define some 

forms being either between simple and full revealness, or weaker 

than simple r e v e a l n e s s . These forms, as well as possibly others, 

arise naturally from the restriction of a general schema which 

describes full revealness (see Proposition 1 ) . 

Terminology and notation are the usual ones. Basic referen­

ce book on Alternative Set Theory is [VJ. m,n,..., denote finite 

natural numbers, a,b,..., denote arbitrary natural numbers, while 

lower greek letters « , |3,y,..., are used exclusively to denote 

o r d i n a l s . Thus,o&-*# means oc c fin XL • 

Recall that a class X is revealed if for every countable 

Y£X there is a set u such that Y i » u £ X . X is fully revealed 

( f . revealed) if for every normal formula §>(x,Z) of FLy, the 

class -fx; g>(x,X)} is revealed. Clearly the latter condition is 

much stronger than the former. 

The following is a rather well-known, easily proved charac­

terization which shows the close connection'between*full reveal­

ness and saturation (see IS-V3, § 1, or IP-S3, Theorem 5.1). 
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Proposition 1. A class X is f. revealed iff the following 

schema holds: 
,*# 

Ay1,?2''*"(X):(Vn)(J x)(y(x,X)&91(x)& ...iy R(x))-* 

-*(3x)(Vn)(<j>(x,X)*yn(x))f 

for all normal formulas y(x,Z) and all sequences of set-formu-

las ( ¥ n) n of FLV. D 

By restricting the class of normal formulas for which the 

above schema is true, we get various weaker forms of full reveal-

ness.. 

In this paper we consider three such restrictions, namely 

the schemas: 

Ax*Z (X), A JftZ* (X), A^1 L (X) for all positive 9?. 

(Recall that the formula <j?(x,Z) is ̂ positive in Z, or simply posi­

tive, if it belongs to the smallest class of formulas containing 

the set-formulas, the formula xeZ and closed under the positive 

operations & , , , . ) 

For simplicity, we drop the superscripts y,, 9>2,... from the 

above symbols of schemas, as well as the subscript xeZ. Thus, the 

first of the foregoing three schemas is now written A(X). Every 

normal formula g?(x,Z) yields an operator f«> which transforms 

the class X to the class Qfl(X) = -Cx; g>(x,X)l. Then, it is easy 

to see that for every normal cp , every X and every (y n) n,
 ( 

A«(X) holds iff A( r^(X)) holds. 

Thus, the forementioned schemas take the forms: 

A(X):(Vn)(J xcX)(c?18c...tyn)—> (H x e X)( V n) g>n, 

A(P(X)):(Vn)(3xeP(X)')(y15c . ..fcyn) -> (3 x e P(X))( V n)yn, 

A( r^(X)):(Vn)(3x 6 I^,(X)) (<*-.*> ...&<j>n)~» 

~ » ( 3 x e f^ (X))(Vn)yn, y positive, 

where P is the power-class operator. 

Definition 2. The class. X is called: a) weakly revealed 

(w. revealefi) if A(X) is true, b> strongly revealed (s. revealed) 

if A(P(X)) is true and c) weak fully revealed (w.f. revealed) if 

A( n^(X)) is true for all positive 9. 

The following contains some trivial facts. 

- 64 -



Proposition 3. a) X is w. revealed iff for every sequence -

(X ) of set-definable classes such that Xn(X,n . ..nX ) + 0 

for every neFN, we have X n ( H X )=t-0. 

b) Every revealed class is w. revealed . 
c) Every s. revealed class is revealed . 
d) Every w . f . revealed class is s . revealed. 

Proof, a) is immediate from the explicit formulation of A(X), 

and it is well-known that every revealed class satisfies a), 

c) Let X be s. revealed and Y= i y, ,y«,. . .} 2 X. Put 9 (x)s-ty, ,. .. 

• ••>yni-
x* Then apply the schema A(P(X)) with those g> to get 

an xe P(X) such that YSx. d) is obvious since x£Z is positive. D 

Proposition 4. X is w.f. revealed iff for every positive 

cp, ^>(X) is w.f. revealed . 

Proof. Immediate from the fact that if <p,Y» are positive * 
formulas,, then the formula e> such that T^ = TL ° HL. is positive. D 

Proposition 5. The following are equivalent: 

a) X is s. revealed, b) for any sequence (u ) of -subsets of X, 

there is a set u such that U-iu ;n 6 FNifi u SX, c) P(X) is revea­

led. 

Proof, a)~-vb). Let *Cu1,u2 ,. . . } £ P(X), and put 

9 n ( x ) s u 1 u . . 1 u u n £ x . By A(P(X)), we get easily a set ueP(X) 

such that U-tun;n e FN{£u. 

b)—>-c). Let again 4u,,u2, ...}£ P(X). Then there is some u such 

that U-lun;ne FN}£ u ex. Theref ore *ul ,u2,. . .} 2 P(u) £ P(X). 

c)—» aO. This is immediate from the fact that, by definition, 

X is s. revealed iff P(X) is w. revealed, and Prop. 3(b). D 

Corollary 6. a) Every TT-class is s.revealed, b) Every 

TT-semiset is w.f. revealed . 

Proof , a) If X=MX n;ncFNr, then P(X)= H4P(Xn) ;ne FNT, 

thus P(X) is revealed, b) If X= (Mun;n e FN}, . then for every 

positive ^, P 9(X)= n4r<y(un)jn€ FN} (cf .CT3, 1.6). D 

The following shows that strong revealness does not become 
stronger if we replace P(X) by P2(X), P3(X) etc. 

Proposition 7. If X is s. revealed, then Pn(X) is s. revea­

led for all ne FN. 

Proof . It suffices to prove that if X is s . revealed, then 
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so is P(X), Let X be s. revealed and let U-Cun;ne FNl £ P(X). Then 

u £ P(X) and U u n & X for every n, hence U{ U uR;n e FN|c X. By 

assumption, there is u such that l/(Uun;ne FNisusX. It follows 

that U u n £ u for every n, whence u n£p(u). Therefore LHu ;neFNj£ 

c p(u) and P(u)S P(X). Q 

Let us denote by WR,R,SR,WFR,FR the (uncodable) classes of 

.w. revealed, revealed, s. revealed, w.f. revealed and f. revealed 

classes respectively. Then, by Prop. 3, 

FR£WFR£SR£ R £ WR . 

We are going to show that all these inclusions are proper. 

Proposition 8. FR£WFR, 

; Proiof. Let X be a proper TT-semiset. By Corollary 6, 

XCWFR. Clearly X ^ FR, since V\X cannot be revea led . D 

Proposition 9 . WFR $ SR. 

Proof. Put R= U\ ax^ai;a £ N\ FNl . R is s. revealed. Indeed, 

if u£ R, then there are c,deN such that FN< c < dom(u) < d , hence 

u St Ui a x. *Cal;c< a< d\. It follows from the revealness of N\ FN 

that, given a sequence of subsets of R, (u ) , there are c,d of 

N such that Vi un;nc FN } Q LHax -lâ  ;c<: a < d . 

Let now 4b ,...,b„J be an infinite set of infinite natural num-
o' * e 

bers in their natural ordering. Puvt w= U-i b .*•{ dl ;ti£ ej. Let 

X=Ruw. Clearly X is s. revea led . Consider the formula 9>(x,Z)s 

» ( Vy cN)(x c ZMiyi). Then, f is positive and it is easy to ve­

rify that T1,(X)=FN. Since FN is not revealed, X is not w.f. re­

vealed according to Prop. 4. D 

Proposition 10. SR $ R. 

Proof. Consider an infinite set {a ,. . . ,a.} of infinite na­

tural numbers in their natural ordering and such that a
x + i -

a
x 

is infinite for all x-£d. Let w -,- £ a
x>

a
x +i)

 and enumerate all. 

wn, ns FN, as follows : wR= i y^n; oC € SL\ . Put XcC= i yo(n;n e FN } 

for every oc c -0. , Me shall construct two sequences ( U X ^ J 

^z«ĉ «c€-a w i t n t h e following properties: 

i) u^&u^ for eC-« fl, 

ii) X^c u^ for all oc e SI, 

iii) ^zoPoc«xiis a decreasing sequence of natural numbers 
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coinitial to U*w^;x>FN}, 

iv) fz^; ft <cc\CS ujt=0, for all oc e SI . 
v) For every oo e H there is some c> FN such that I^Nu^l* 

> c for all x^d and all fi < oc. 
Suppose the sequences have been constructed and put 

X= U\ u^joc e SI}. Since (^oC)<lC€xi is increasing, it is easy to see 

that X is revealed. Further, by (ii), Ui wR;n € FN}= Ui X^ ; oc e SIIQ 
£ X and, by (iv), if Z = -Cẑ .; cc e SI} , then ZnX=0. Suppose 

UA,w ;n€FN}c uSX for some set u.% Then, there is some e>FN 

such that U{w x;xie}£ u£X. But this contradicts the fact that 

Z is coinitial to Uiw x;x>FN$ and ZnX=0. Therefore there is no 

u such that Ui wR;n € FN J J£U£ X which, by Prop. 5(b), implies that 

X is not s. revealed. 

Construction of the sequences. Assume u*,z^ have been defined for* 

all p> < oc and satisfy properties (i)-(v). Then UiXn;fi<<3C}Q 
£ U-i u«; fi < <*?, -U^; /S < cc} D(Ui up; A < oc?) = 0 and there is so­

me o FN such that |w N ufl| > c for all x& d and all /3 < 06 . Then, 
clearly, using the prolongation axiom, w0 can extend Ll-t u«; (h <oc? 
to a set u such that ur\iz - /3-cccl=0 and |w x\u|>c for all x&6. 
Choose, besides, v such that X^ £ vn{z«; /3<<*} = 0 and |vnw 1^1 

for every x«£d. This is certainly possible since each X^ meets 

every interval w in exactly "one point. Put u^suuv. Then 

|wx\uiC|>e-l for all x -&d . Suppose -fr̂ ; cc e ill is a fixed enu­
meration of the class U4w w;x>FNj. Choose z^ such that z~< r, -

x **» Of ©C ' 

Zoc< z/5 *or e v e ry fi> < <* anrf z«-c e U •{ wx;x > F N ] \ u^. This is pos­
sible because of condition (v). It is obvious that the defined 
u ,z conform with all requirements and the construction is comp­
lete. D 

lemma 11. a) A class X is non-revealed iff there, is a 

function f such that f"FN£X and the class «U;f(a)«M} is coiniti­

al to N\ FN. 

b) A class X is w. revealed iff for every function f such that 

f'FNfiX, there is some a> FN such that f(a)eX. 

Proof. Both claims are easily proved using the prolongati­

on axiom. D 

Proposition 12. R ^ W R . 

Proof. Take a decreasing il-sequence ( X ^ - . Q . °* natural 
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numbers coinitial to N\FN, and consider the class X=N \ {x^loCe&i* 
By Lemma 11(a), where f is the identity, we get that X is not re­
vealed. On the other hand, let f'FNsX. It suffices to show that 
f"(N\ FN)n X4-0. Suppose the contrary. Then fH(N\ FN)s -tx̂ joc e .0?-
Clearly, for non-trivial f (i.e. f such that fHFN is countable), 
there is utsNXFN such that fMu is infinite. Therefore -{x^joc eSll 
contains an infinite subset v. But then v must be coinitial to 
N\FN, a contradiction. D 

Let us remark that in proving Proposition 10, we constructed 
a class X of the form X= U-tu^; oc e ill where ( u ^ ^ ds increasing, 
which failed to be s. revealed. Clearly, every such class is reve­
aled but the converse is open for us. Let us call these classes 
completely revealed (c. revealed) and let CR denote the class of 
all c. revealed classes. Then, 

Proposition 13. SR -f CR. 

Proof. Let X be s. revealed and let X= i x^; oc e SH be an enu­
meration of X. Since for every countable sequence -lu^u^, . . . 1 £ 
S P(X) there is some u such that U{ uR;n € FNjs u S X, it is clear 
that we can define inductively an increasing sequence (u ) n such 

<BC aC€,SL 

that x^c u^ for every oc e Jl and u^ £ X. Hence X= Ui u ; oc e SL\. 
Therefore SRfiCR and combining this with the proof of Prop. 10, 
we get SR^CR. D 

Proposition 14. X is s. revealed iff there is an increasing 
H-sequence (udt)-tfcja such that X= Ui u^; oc elll and P(X)= U-LP(u<.); 
oc e I U -

Proof . Suppose X satisfies the conditions and 4v, ,v2, •••$S 
£P(X). Let vng p(uv ) for every neFN. If oc is some ordinal 

rt greater than all CSG, then dearly Ui v„;n e FN}£ u £ X. Converse-
n n co 

ly, suppose X is s. revealed. By Prop. 7, P(X) is s. revealed, 
hence c. revealed according to Prop. 13. Let P(X)= Ui r^; oc e SI I 
where ( r ^ ^ ^ i s increasing. Then X= Up(X) = UlUr^; oc e Si}. Put 
u^-Ur^. Clearly (uoC)oC6iIis increasing and X= Ui u^; oC e &} . Let 
v*P(X). Then v c r^ for some 06 , hence v £ U r^ s-û  and this pro­
ves the claim. D 1 

One could see the notions of revealness defined in this pa- , 
per in a more general context as follows: Let 0 denote the class 
of operators induced by normal formulas. 0 together with the 
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usual law of composition of transformations, form a semigroup. 

The operator I induced by the formula xeZ is the unit element 

of the semigroup. By subsemigroup of 0 we mean any subclass of 0 

closed under composition and containing I. For example the sub­

class 0 of positive operators is a subsemigroup of 0. Let us de­

note by <r.,..., P "> the subsemigroup generated by the elements 

r1-,...,!"* of 0. Then, clearly, 

a) X is w. revealed iff A(P(tX)) holds for every Pe<I>. 

b) X is s. revealed iff A(T(X)) holds for every Pe < P>. 

(See Prop. 7.) 

Generalizing, one could say that every subsemigroup S of 0 

defines a reasonable notion of revealness, say S-revealness, in 

the obvious way, that is, 

X is S-revealed iff A(P(X)) holds for every F e S. 

Of course not every such notion is expected to be non-trivial, in­

teresting and useful. Some of them, however, might be. For examp­

le the notion corresponding to the subsemigroup <P,<N*>, where ~ 

is the operator of the formula x$Z, much stronger than strong re­

vealness, seems to be interesting. 

We finish with some questions: 

1) Is every revealed class completely revealed? 

2) Does there exist any subsemigroup S of 0 such that re­

vealness be equivalent to S-revealness? 

3) Ooes there exist any "small" subsemigroup T of 0 such 

that full revealness be equivalent to" T-revealness? 
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