
Commentationes Mathematicae Universitatis Carolinae

Stefan Veldsman
A remark on radical-semisimple classes of fully ordered groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 2, 217--219

Persistent URL: http://dml.cz/dmlcz/106533

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106533
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

A REMARK ON RADICAL-SEMISIMPLE CLASSES OF FULLY ORDERED GROUPS 

S. VELDSMAN 

Abstract: It is shown that a non-trivial radical-semisim-
le class of fully ordered groups cannot determine a hereditary 
upper radical or a homomorphically closed semisimple class. 
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The study of radical and semisimple classes of fully order­

ed groups was initiated by Chehata and Wiegandt \,1~)• For referen­

ces to the subsequent work on this topic, the references of Gard­

ner [2] can be consulted. The radical theory of this class of 

groups has some peculiar properties; the mentioned two papers 

can be consulted. We will show here that a non-trivial radical-

semisimple class of fully ordered groups (such classes do ex­

ist) can never have a hereditary upper radical or a homomorphi­

cally closed semisimple class. This result is based on two re­

sults from Gardner C2l and the theory of complementary radi­

cals [31. 

Let us firstly agree on some notation and conventions. 

Fully ordered groups (f.o. groups) are not necessarily abelian. 

If I is a convex normal subgroup of G, it will be denoted by 

I <3 G. A class of f.o. groups M is hereditary if I <3 G € At im­

plies I sil and homomorphically closed if any O-homomorphic 

image of a member from Ai is also in M . We will also use the 

following two conditions that Ai may satisfy: 

(* ) 0 1s A <3 B and A & J\i implies B t Ji. 

(**) 0=^A/B e vM implies A G Jt . 

As usual, XL and tf will denote the upper radical and semisim-

le operators respectively. The next two assertions have been 

- 217 -



proved by Gardner [2] for fully ordered abelian groups. They 

remain true for arbitrary f.o. groups. 

Let % be a radical class of f.o. groups, .*/ the correspon­

ding semisimple class. Then 

(1) ft is hereditary iff :/ satisfies the condition (sjO . 

(2) tf is homomorphically closed iff 31 satisfies the con­

dition (* * ). 

We shall also need the following: A radical class % of f . o . 

groups is a complementary radical class if £ t $'Jl is the class 

of all f.o. groups. A semisimple class ^ is a complementary 

semisimple class if Zfrf is a complementary radical class. In [3] 

it was shown that there are no non-trivial complementary radi­

cal or semisimple classes in the class of all f.o. groups. 

We can now state and prove our main result: 

Theorem. Let #, -f- 0 be a radical-semisimple class of f.o. 

groups. The following are equivalent: 

(i) 11% is hereditary 

(ii) ^% is homomorphically closed 

(iii) Jt is the class of all f.o. groups. 

Proof. Clearly only (i) =-> (iii) and (ii) •=? (iii) need a 

verification. Firstly, assume \% is hereditary. From (1) above, 

it follows that ^11% - Si must satisfy the condition (>fc). Since 

Jv is a radical class, Proposition 2.2 in [3] yields ,% a com­

plementary radical class. But such classes are only the trivi­

al ones (Example 5 in [33) and we conclude that % must be 

the class of all f.o. groups. If *£% is homomorphically closed, 

then from (2) above U^ft = (R must satisfy the condition (**). 

But any semisimple class which satisfies the condition (**) 

must be a complementary semisimple class in view of Propositi­

on 2. 2* in [3]. As above, we conclude that iTt is the class of 

all f.o. groups. 
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