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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

PARITY OF ORTHOGONAL PERMUTATIONS 
AleS QRAPAL, Toads KEPKA 

Abstract: The parity of orthogonal permutations of some finite abelian 
groups is investigated. 

Key words: Parity, orthogonal, permutation. 

Classification: 20B25 

This paper is a continuation of 12]. Here, we are investigating the pari­

ty of some orthogonal permutations which are not automorphisms. Again, the 

results yield constructions of idempotent quasigroups with prescribed order 

and parity of translations. 

7 . The case n=15. Let G=Z,c(+). Consider the following two 14-cycles f 

and g*. 

f=(l 13 3 11 5 9 7 8 10 6 12 4 14 2), 

g=(l 3 7 2 5 11 10 4 9 6 13 14 12 8). 

It is easy to check that (f,g) is a pair of orthogonal permutations of C 

and that sgn(g)= -l=sgn(f). 

7-l- Proposition. (̂ (G,f) is an orthostrophic idempotent quasigroup of 

type (4) and order 15. 

Proof. See [2, Lemma 3.6(iv)3. 

8. The case n--.5. 

8*1* Proposition, (i) Every idempotent quasigroup of order 1 is of ty­

pe (1). 

(ii) There is no idempotent quasigroup of order 2. 

(iii) Every idempotent quasigroup of order 3 is of type (4). 

(iv) Every idempotent quasigroup of order 4 is of type (1). 

Proof, (i) and (ii). Obvious. 

(iii) Every translation is a 2-cycle. 
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(iv) Every translation is a 3-cycle. 

8-2- Proposition. There is no idempotent quasigroup of order 5 and type 

(1). 

Proof. Let, on the contrary, Q(*) be such a quasigroup. Then its every 

(left or right) translation f is composed from two 2-cycles, and hence f =1. 

Therefore a*b=c implies c*b=a and c* a=b for any a,b,ceQ. Without loss of 

generality, we can assume Q=-( 1,2,3,4,5} and ^(1,Q(* ))=(2 3)(4 5). Then 

2*3=1, and hence 2*1=3. This implies £(2,Q(* ))=(1 3)(4 5), a contradic­

tion. 

9. The case n=6 

*•*• Proposition. There is no idempotent quasigroup of order 6 such that 

each right translation is an odd permutation. 

Proof. Suppose that Q is such a quasigroup. Let R=-(3t(a,Q);a€ Q}. For 

any ft R, f=(a b)(c d e), we denote the setta,b} by D(f) and the set{c,d,e? 

by T(f). For a,b€Q, let fa D denote the (unique) permutation f c R with f(a)= 

=b. Obviously, la,b}S T(f a D) implies fa,b]£T(f b a). 

(a) Suppose there are f,g*R, f*g, such that T(f)=T(g)=T. Put D=(D(f)u 

uO(g))-(D(f)nD(g)). As D(f)4*D(g), we have Q=TuD(f)uD(g), and hence 

card(D)=2. If heR, f*h*g, then max(card(T(h)nD(f)), card(T(h)nD(g)), 

card(T(h)nT))£l, and therefore DST(h). This allows for only two distinct 

translations h, a contradiction. 

(b) The sets D(f), f€ R induce a graph on Q. Let G denote the graph com­

plementary to such a graph. Then G has 9 edges and degG(x)4
s-l for any xeQ. 

Moreover, by (a) degg(x)4 2 for any xeQ. Suppose that there exists aeQ with 

degg(a)=0. The complete graph on five points has 10 edges, and therefore the­

re is exactly one translation f eR such that a40(f). For any g€R, f*fg, we 

have a + T(g), T(f)4T(g) and card(D(f)nT(g))41. Hence card(T(g)nT(f))=2. 

However, this allows for at most three different translations g, a contradic­

tion. 

(c) By (a) and (b) we have degG(x)>3 for any xeG. By counting the ed­

ges we find out that the equality has to take place. Choose any a£Q and let 

b,c,d be its adjacent points. Then either fD a=fa d or fp a«fa . Assume the 

latter one. Then fbfa«ftfC-fCfb, fdta
=fa,b*fb,d> *c,a«*atd*d,c

 and fd,b= 
=fD c=fc d. Therefore G has a complete subgraph on four points. However, such 
a graph cannot be extended to a 3-regular graph on six points. 

9,2# Corollary. There is no idempotent quasigroup of order 6 and type 
(2) or (3) or (4). 
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9*5- Example• Consider the following quasigroup Q: 

Q 1 2 3 4 5 6 

1 13 4 5 6 2 

2 3 2 6 14 5 

3 6 5 3 2 14 

4 5 6 2 4 3 1 

5 2 4 16 5 3 

6 4 15 3 2 6 

Then Q is an idempotent quasigroup of order 6 and type (1). (If P is a prolon­

gation of Q, then ^(p)-. W^p).- m(P)=if(P)). 

*•*• Example• Consider the following quasigroup Q: 

Q 1 2 3 4 5 6 

1 13 4 5 6 2 

2 4 2 16 3 5 

3 5 6 3 1 2 4 

4 6 5 2 4 13 

5 2 4 6 3 5 1 

6 3 15 2 4 6 

The left translations of ft are even permutations as well as the right trans­

lation by 1. On the other hand, the remaining five right translations are 

odd permutations. 

10. Numbers divisible by 8 

10.1. Let n=> 2 and let mZl be odd. Let s=2nm, t=2n"1m and G=G(+)= 

=Z2(+)xZa(+). Put A=C(0 , i ) ;0 . s i< tJ , B={(0,i);t£i<s{, C= i(l9i);0^ i< t-l|, 

D= -Kl,i);t-l£i<s-l? and E=-f(l,s-l)f. Hence card(A)=card(B)=card(D)=t, 

card(C)=t-l, card(E)=l and G is the disjoint union of these sets, G=AuBuC u 

u DuE. Now, we shall define a transformation q of G as follows: 

(i) q((0,i))=(0,i) for every (0,i)cA; hence q|A=lA and q(A)=A. 

(ii) q((0,i))=(l,i) for every (0,i)cB; hence q|B= #((1,0),Q)|B and 

q(B)=(DuE)--C(l,t-l)}. 

(iii) q((l,i))=(l,i+l) for every (l,i)eC; hence q|C= #((0,1),G)|C 

and q(C)=(Cui(l,t-l)})-4(l,0)|. 

(iv) q((l,i))=(0,i+l) for every (l,i)eD; hence q|D= #((1,1),G)|D 

and q(D)=B. 

(v) q((l,s-l))=(l,0); hence q|E= *,((0,1),G)|E and q(E)= *(1,0)}. 
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10.1.1. Lemma, q is a permutation of G and sgn(q)= -1. 

Proof. Clearly, q(G)=G and q is a permutation. On the other hand, it is 

easy to check that q is a cycle of length 3t, so that q is odd. 

Now, put f(x)=q(-x) and g(x)=q(x)+x for every xeG. 

10.1.2. Lemma. Both f and g are permutations of G, (f,g) is a pair of 

orthogonal permutations and sgn(f)= -1. 

Proof. First, f is a composition of q and the even permutation x—> -x. 

Consequently, f is a permutation and sgn(f)= -l. Now, define four transforma­

tions of G by hx(x)=2x, h2(x)=2x+(l,0), h3(x)=2x+(0,l) and h4(x)=2x+(l,l). 

Then glAsh-jA, g|B=h2|B, g|C=h3|C, g|D=h4|D and g|E=h3|E. Further, h-^a) 4-

#h x(b), if a,be A (resp. B, CuE, D) and a*b, and (1,0),(0,1),(1,1), 

(0,s-D,(l,s-l)$.h-(G). Using this, it is easy to see that g is injective, 

and therefore g is a permutation. 

l°-l-~- Lemma. sgn(g)= - 1 . 
Proof. Let < denote the sharp lexicographical ordering on G ((i,j) < 

<(k,l) iff either i< k or i=k and j<l). Put M= 4(x,y); x,ycG, x<y, g(x)> 

>g(y)J and d=card(M). Then sgn(g)=(-l)d and d=5Id(U,V), U,Ve{A,B,C,D,E}, 

d(U,V)=card((UxV)nM). Clearly, d(A,A)=d(A,B)=d(A,D)=d(A,E)=d(B,A)=d(B,B)= 

=d(C,A)=d(C,B)=d(C,C)=d(C,D)=d(C,E)=d(D,A)=d(D,B)=d(D,C)=d(E,A)=d(E,B)= 

=d(E,C)=d(E,D)=d(E,E)=0. Further, d(A,C)=^E0 i=t(t-D/2=2
n"2m(2n"Vl), 

d(B,C)=card(BxC)=t(t-l)=2n*"1m(2n""Vl), d(B,D)= !-f0 i=t(t-l)/2=2
n~2m(2n~Vl), 

d(B,E)=card(B)=t=2n"1m, d(D,D)=t-l=2n"Vl, d(D,E)=card(D)=t=2n"1m. From this, 
d=(s+l)t-l=(2Vl)2n~Vl is odd. 

4 
1°*1*4* LetTina- * is a 5-cycle. 
Proof, f is composed from t-2 4-cycles of the form 

((0,i) (l,s-i) (1,1-t-l) (0,s-D), l£U£t-2, from the 5-cycle 

((0,t-l) (l,t+l) (0,t) (l,t) (0,t+D) and from the 2-cycle 

((1,0) (1,1). 

1°*2* Proposition. Let k £ 3 and let mi* 1 be odd. Then there exists an 

orthostrophic io^mpotent quasigroup Q of order zSi and type (4). Moreover, 

3t(a,Q) is a 5-cycle for any a€Q. 

10.3. Let m=l, s=2n, Uln~l
t n ^ 2 . 

10-3.1. Lemma- 9 contains the following n+2-cycle: 

((0,s-l).. .(l,s-2l-l).. .(1,8-1)), 04. U n - 1 . 

Proof. g((l,s-l))=(l,s-2>l) for any 2£j£t+l and g((0,s-l))=(l,s-2), 
g((l,s-l))=(0,s-l). 

Now, put H=G--C(l,s-1)} and define a permutation h of H by h(x)=g(x) for 
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every xeH, x*(l,t-l) and h((l,t-l))=(0,s-l). 

10.3 .2. Lemma. Let a,ax,... ,ane*0,li, i=a12n~1«-a22n~2+ . . .+an ̂ 2+a , 

0 £ i < s . Then h((a,i))=(a1,2i+a) (2i+a computed in Z ), 

Proof. Easy. 

10-5-3- Lemma- Let a0i
aii---ta

n
6^°'1^» i = ai 2 n 1 + - " + a

n . i
2 + a

n -
 For 0 ~ J -

4= n, put x.=(a,,2^i+2^"1a0+2'1"2a1+...+2a. 2+a. x ) . Then xQ=(a0,i) and h(xk)= 

=xk+l (or any O^k^"" 1* h (x n )=x 0 . 
Proof. Use 10.3,2. 

10.3.4. Lemma. h n + 1 = l H . 

Proof . This is clear from 1 0 . 3 . 3 . 

10*-5-5- Lemma- 9 is an n+2-cycle. 
Proof . The result is an easy consequence of the preceding observati-* 

ons. 

11 . Numbers divisible by 4 

1 1 . 1 . Let H=H(+)=Z«(+)*Z2(+) and let Q be a finite idempotent quasi-

group of order m£3. Put G = H ( + ) A Q and consider the following four 2-cycles 

from ^(H): f=((0,0) (0,1)), g=((0,l) (1,1)), h=((l,0) (1,1)), k=((0,l)(l,0)). 

Define an operation ° on H by ao b=k(g(a)+h(b». 

11.1.1. Lemma. H(o ) is an idempotent quasigroup and every of its trans­

lations is an even permutation. 

Proof. Easy. 

Put G( o )=H( o )xQ and let t e tf(Q) be a regular permutation (i.e. t fi­
xes no element). Now, we shall define an operation .* on G as follows: 

(i) (a,x)*(b,y)=(a+b,xy) for all a,beH, x,yeQ, x*y-t-t(x). 

(ii) (a,x)*(b,x) =(a-b,x) for all a,beH and xeQ. 

(iii) (a,x)*(b,t(x))=(f(a+b),xt(x)) for all a,beH, xcQ. 

11.1.2. Lemma. G(* ) is an idempotent quasigroup and every of its trans­

lations is an odd permutation. 

Proof. From 6.1.1 and from the fact that H together with the operation 

(a,b)—* f(a+b) is a quasigroup, it is easy to see that G(*c) is an idempo­

tent quasigroup. Now, let asH and xeQ. Put q=#((a,x),G(* )) and p=rf((a,x), 

G(o )). Then p, p~ are even permutations and sgn(qp" )=sgn(q). But 

qp (...,y)*(...,y) for each y eQ, and hence there are permutations w of the 
set H such that qp"1(b,y)=(w (b),y). Obviously, sgn(qp""1)= TFsgn(w ). However, 

for y*x,xt(x), wy= #(a,H(+))^(a,H( o ) )
_ 1 and sgn(wy)=l. For y=x, wy=lH 
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»nd again sgn(w )=1. Finally, for y=xt(x), w =f^(a,H(+))^(a,H( o ))"1 and 

sgn(w )=sgn(f)= -1. We have proved that the left translations of G(*0 are 

odd. In the right hand case, we can proceed similarly. 

11.1.3. Lemma. Let m be odd, Q=Z m(&), xAy=2x-y. Then #((0,x),G(*))
4 

is a 3-cycle for every xfcQ. 

Proof. Clearly, &((0,x),G(*)) is composed from the following cycles: 

((a,y) (a,2x-y)), a&H, yc Q--( x,t(x),2x-t(x)J; 

((0,x)); ((b,x) (kh(b),x) ((kh)2(b),x)), b=(0,l); 

((c,t(x)) (c,2x-t(x))), c=(l,0),(l,l); 

«0,t(x)) (b,2x-t(x)) (b,t(x)) (0,2x-t(x))). 

1L2. Corollary. Let m^T3 be odd. Then there exists an idempotent qua-

sigroup of order 4m and type (4) such that #(a,Q) is a 3-cycle for some 

asQ. 
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