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A REMARK ON THE WEAK TOPOLOGY 
OF THE HILBERT SPACE 

MaXgorzata WÓJCICKA 

Abstract: V.V. Uspenskil [ AJ asked if every j£ -space can be embedded 

in an \ -space with property kR. It is shown that the Hilbert space 1« en­

dowed with the weak topology provides a negative answer to this question. 
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Classification: 46C05, 54E20, 54D50, 54C25 

*• Introduction. Let us recall that a regular space X is an \ -space 

if X has a countable k-network 3t , i.e. a collection of subsets (not neces­

sarily open) such that whenever KcU with K compact and U open in X, then 

Kc Pc U for some P e 3i; the class of j(,Q-spaces was introduced by E. Micha­

el [Ml], where we refer the reader for the basic properties. A completely re­

gular space X is a kR-space if arbitrary function f:X->R, whose restricti­

on to every compact Kc X is continuous on X, see [M2J. 

V.V. Uspenskii C Al asked if every ^Q-space can be embedded in an ^ Q-

space with property kR. In this note we shall show that the Hilbert space 1 2 

endowed with the weak topology (which is an ^Q-space, see [Ml, Cor. 7.103) 

provides a negative answer to this question: 

Theorem 1. The infinite-dimensional separable Hilbert space equipped 

with the weak topology cannot be embedded into any ^Q-space being a kR-

space. 

Let us notice that our reasoning shows also that a well-known space V 

considered by Varadarajan IV, p.981: the natural numbers extended by the 

filter of the complements of density 0 sets, provides another example of 

this kind.x) 

xT This example was considered also by P. Uryson (see P.S. Aleksandrov, P.S. 
Uryson: Memuar o kompaktnych topologiceskich prostranstvach, 3rd editi­
on, Moscow 1971 (pp. 119-120)). (Referee's remark) 
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We shall denote by N the natural numbers and by |A| the cardinality of 

the set A. 

2. The Fernique's space F. We shap.1 denote by 12 the Hilbert space of 

the square-summable sequences of the real numbers. Let e,,e2,... be the stan­

dard orthonormal basis in 12< Following Fernique 1.HJ, p.268J we shall consi­

der the following subspace of 12: 

*^cH J 

equipped with the topology induced by the weak topology of 12, i . e . the points 

ne.-, are isolated in F and basic neighbourhoods of the point 0 in F are of 

the form: 
oo «-, 

(*) V=4ne4: |noC.||<llu-tOi, where.E ocf<:oo. 

We shall need the following observation about the space F: 

Lemma 2. Let W*;> W ? 3 ... be a sequence of open sets in the space F such 

that ̂ r\| W. sfpl. Then there exists a set YcF satisfying the conditions: 

OeT, |Y-W.|<GO , for 1=1,2,... and no sequence of points of the set Y con­

verges to 0. 

Proof: Choose inductively for each n=l,2,..., pairwise disjoint sets 

Anc N such that |Aj--n
2 and Ynr-Sne^ife A ^ c W ^ We shall show that Y= U Y n 

has the required property. Each set Y - w
n
c Y i u •••uY

n_i is finite and obvi­

ously no sequence from Y converges to 0, so it is enough to show that OcY. 

Aiming at a contradiction, assume that there exists a neighbourhood V of the 

form (*) with Ynv=0. Then, for each ieA n, Inocjil, but then 

%2L oC f Z \KA -=*T r 1, which contradicts the fact that the sequence oc, ,oC«... 

is square summable. 

3. Proof of Theorem 1. Let X be any \-space containing the space F 

defined in sec. 2. We shall show that X is not a kR-space. 

The point 0 is a Gj.-set in X hence there exist sets in X such that 

W p f - p W - p . . . and -\ 01= . C\^ W r 

By Lemma 2 we can find a set YcF such that 0e?, (Y-Wj | < oo for isN and no 

sequence of points of Y converges to 0. 

Let ypy2,... be an enumeration of the elements of Y. We shall choose an 

open neighbourhood V, in X of the points y, satisfying the following conditi­

ons: 
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(ii> -£< Vl6
V?iV«». 

(iii) \ r. ^Tyt. 

(iv) no sequence of points of the set JJ Sl^ converges to 0. 

To this end we define inductively open sets U^U^***- in x sucn tnat 
UinF =iy^» U^i for e v e rY ieN, U i n U = 0 for i+j and if y^\ then 

U tcW m. It is easy to check that . u . U. c . u . U. uiOl. Indeed, if q4=0 then 
I m ' * v * l i > w i i 

there exists meN such that q^U^ and the open neighbourhood X-W^ of the point 
q intersects only finitely many sets U.. In a similar way one can verify that 
U, n .U. U^0. 
i a * * J 

Let us consider a k-network in X consisting of closed sets, let S,^,... 
be an enumeration of the elements of the k-network containing 0 and let 

V 1 = U r U ^ . j ^ i and y^Sji. 

Obviously, the conditions (i)-(iii) are satisfied. We shall check that (iv) 
holds as well. Assume on the contrary that there exists a compact set 

CO 

Z c XJ^ \f^ homeomorphic with a convergent sequence, 0 being the limit point, 
and let P=4 VjeY.-VjOZ-HJ; since 0 $ ? ^ the set P is infinite. By the choice 
of Y, no sequence from Y converges to 0, hence there exists a neighbourhood 
W of 0 such that P-W is i n f i n i t e . The set Z-W is finite, so Z-W c ̂ ^ Mi 

for some i , and the set Zr\W is compact, so Z n W c S . c W for some j . 

Consider y c P-W with n >max(i ,j ) . Then 
o 

Vn n(Z-W)=0 and 
o 

V n (ZnW)c vn n S . =0 as yn $ S. . 
o "o Jo o Jo 

Therefore V nZ-0, a contradiction with the definition of the set P. 
q 

Now, for every neN we define a continuous function in.X — * R equal to 
0 on the set X-Vn, and 1 ontyni. Put f=max fR. In particular, f equals 1 
on Y and f(0)=0 and since 0€?, f is not continuous at 0. By conditions 
(i)-(iii) it follows that 0 is the unique point of discontinuity of f. 

We shall show that f is continuous on each compact set KcX, just vio­
lating the k»-property. Let KCX be a compact set containing 0. Since com-
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pact sets in any ^Q-space are metrizable, condition (iv) implies that 

04K r..U.V . It follows that for some neighbourhood W of 0, the function f 
• *€ n 

vanishes on the set WoK. Hence the restriction L, is continuous at 0 and f 

being continuous at any other point in X, £^ is continuous. 
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