
Commentationes Mathematicae Universitatis Carolinae

Jiří Sgall; Jiří Witzany
Dimension of indiscernibility equivalences

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 537--547

Persistent URL: http://dml.cz/dmlcz/106566

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106566
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

DIMENSION OF INDISCERNIBILITY EQUIVALENCES 

Jiff SGALL, Jifl WITZANY 

Abstract; In this paper we study the concept of the topological dimensi­
on by means of the alternative set theory (AST). In the AST various topolo­
gical concepts were studied (see EV.3) but the dimension theory was not worked 
out till now. In our work we define basic notions, prove some characterizati­
ons of the dimension and describe the connection between the classical concept 
and ours. 

Key words; Alternative Set Theory, dimension, indiscernibility equiva­
lence. 

Classification; 03E70, 03H05, 54F45 

1. Basic notions. Let us recall some notions from [VI: 

Sd-class is a set-theoretically defined class, 

fl-class is a class which is an intersection of countably many Sd-classes, 

6>-class is a union of countably many Sd-classes, 

symmetry on A is a reflexive symmetrical relation on A, 

symmetry R on A is said to be compact if for every infinite set u£A the­

re exist x,yeu such that<x,y>cR, 

an indiscernibility equivalence on an Sd-class A is a compact ^-equiva­

lence on A. 

For a given indiscernibility equivalence R on A we define 

Fig(X)=R"X, Mon(x)=R,4x}=Fig({xi), 

Sep(X,Y)s(3Z Sd--class)(Fig(X)£Z8cFig(Y)nz=0), 

Xc=*x;not Sep(X,*xW, 

X0=Sx;Mon(x)sXl, 

X is a figure if X=Fig(X), 

X is closed if X=XC, 

X is open if A-X is closed. 

Observe that X°=A-Fig(A-X) is a dual operation to Fig and hot a topologi­

cal interior in the comroon sense. Open and closed classes have usual topologi­

cal properties (they form topology of a compact metrizable space) and moreover 
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there holds: 

Theorem 1. Let X be a figure. Then the following is equivalent: 

(i) X is a figure of a set u (i.e. X=Fig(u)), 

(ii) X is a Si -class, 

(iii) X is closed. 

Similarly, open classes are exactly such figures that are c*-classes. 

Definition: (1) Let R be an indiscernibility equivalence on A. A sequ­

ence (R jneFN) is called a generating sequence if 

(i) RR is an Sd-symmetry on A, 

(ii) Rn +r
Rn +l

f e Rn> 

(iii) R0=A
2, 

(iv) R= fMRn;n€.FNV 

(2) Let R be an indiscernibility equivalence on a set u. A sequence r= 

= frot>; oc -< 'jrl, Tfe(N-FN), is called a prolongation of a generating sequence if 

(i) Tot, is a symmetry on u, 
( i i ) vrroc+i£r* for ***• 
(iii) rQ=u

2, 

(iv) R = M r n ; n e F N ) . 

It is easy to prove the following theorem (see tVl): 

Theorew 2. (1) For any indiscernibility equivalence there exists a ge­

nerating sequence. 

(2) For any indiscernibility equivalence on a set there exists#a pro­

longation of a generating sequence. 

An indiscernibility equivalence S is called totally disconnected if there 

exists a generating sequence iSn,n€FNl such that S n are equivalences. 

Under a prolongation of a generating sequence of a totally disconnected 

S we understand a prolongation "Cs^; oc-cyl such that s are equivalences. 

2. Dimension. Now we are going to define the dimension of an indiscerni­

bility equivalence and to prove its basic properties. We define one technical 

notion. 

Definition: Let S,, S 2 be symmetries. We define 

S, divides S 2 on -* d -& <$ 

(Vxo,...>xd)((Vi,j)«xitx.>cS2)^ ( 5 i , j , i ^ j ) « x . , x j > e S 1 ) ) . 
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Now let us suppose that R is an indiscernibility equivalence on an Sd-

class A. The following definition is due to P. Vop6nka. 

Definition: dim(R)^ d 3*-^ 

(JS totally disconnected indiscernibility equivalence on A)-

(S£R8cS divides R on .£d+l). 

We call this dimension the inner dimension (to differ from the covering 

dimension). We need also a notion of the local dimension in a point. 

Definition: dim( R, x) -tr d »<# 

(2 B Sd-classXMon(x)£ B fcdim(Rn B 2)^d). 

This definition can be expressed in the following form: 

Theorem 1. Let 31=4 R ; neFN^ be a generating sequence of R, Then 

dim(R,x)^d as (3 n)(dim(Rn(R^ix«2)^d). 

Proof: The implication <£= is trivial. 

==> : If B is the Sd-class from the definition, we have 

m R n M j n e F N ^ =Mon(x)sB, 

and by the axiom of prolongation we have RJ^xlsB for some ncFN. D 

It is trivial that dim(R)=0 iff R is totally disconnected. For an illus­

tration of the definition we show an elementary example. 

Example: Let R=H^R ;neFNl be the usual equivalence of the real numbers, 

Rn=£<x,y>fcRN
2; |x-y|<i/nc*(|x|£n&|y|zn)i. 

We are going to demonstrate that dim(R)£l and thus dim(R)=l because R is not 

totally disconnected. We take 

S =4<x , y>€ .RN 2 ; ( | x | < l/n&|y|< 1/n) or (|x|2:n &|y|?n) O P 

(x.y>0SLrrat(^t^)(3kfin)(}x|<o&/k^ly|or|yrWk^|x|) . 

Then S are equivalences, S= H-CS jncFNl is totally disconnected and ScR. s 

divides only monads of rational numbers and these ones only into two parts, 

consequently we can conclude that S divides R on ^ 2 and dim(R)=l. 

3. A characterization of the dimension. In this paragraph we are going 

to characterize the dimension by means of generating sequences (Theorem 3). 

Let us suppose that tH=iRn;n«.FN} is a generating sequence of an indiscernibi­

lity equivalence R. 

*£ =4 Sn;n€ FNl is a generating sequence of a totally disconnected in­

discernibility equivalence S (i.e. Sn are equivalences). 
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Theorea 1 . Let % and <if be given such that for a deFN the following 

holds: 

(Vn6FN)(Sn + 1£Rn&Sn divides RR on -=d+l). 

Then dim(R)^d. 

Proof: Obviously S= fHSn;neFN }£(H Rn;n&FN} =R. It remains to prove 

that S divides R on --= d+1. Suppose that xQ>'">xr*+i are in one monad of R, 

but each two in distinct monads of S. Then for i,j^d+l, i-*Ki there exists 

a. .£FN such that <x. ,x.>^S . We can take a*FN such that a is greater 
"*• » J •*• J «-.} A 

than all a. . s. Then S does not divide R on -^d+1 - a contradiction. Hence 
dim(R)-id. ' D 

Leans: Suppose that cp(x) is a set-theoretical formula, X (neFN) are 

Sd-classes, X.cX,,, X= (MX :neFNl. Then it holds * n+1 n' n' 

( Vx fiX) <p(x) => (3 n)( Vx £Xn) y(x). 

Proof: Let us suppose that the assertion does not hold. Consequently 

there exists a sequence x sX such that notcp(x ) for all n. We prolong this 

sequence and take oC-^FN such that 

( V£<oC )(x«-<X fc not cp(xp))(such cc exists because X is an Sd-class). 
We take a fie f,-Coon;neFN?, ft ^ FN. It holds x« £ X, notg>(x« ) - a 

contradiction. D 

Theorea 2. Let 31 and *£ be given such that S£R and for a deFN S divi­
des R on £ d+1. 

Then there exists a selected sequence 51 from % and a selected sequence 

*J from V such that 

(Vn)(S .fiRn&Sn divides f on ̂ d+1). n+.L n n n 

Proof: We take^ =S =R =S =(dom(R)) and then we select step by step S". , 

such that "t5".+1£ R. and R.+1 such that ISi. +1 .divides 1L +1 on £d+l. It suffices 
to prove the following two statements: 

(1) (Vno)(Vm)(3n2:no)(Sn-sRm). 

We use the lemma for Xn=S , X=S and <y(x) sas (x£R ). 
o 

(2) (Vn0)(Vm)(an2n0)(Sm divides Rn on --d+1). 

We use the lemma for X=R . X=R. n n +n' » 
o „ 

<gp(x) s (Vx0,...,xd+1)(x=ix0,...,xc|+1r ==»(3i,j, i^j)((x.,x^)GSm)) 

(i.e. (Vxs.R)cp(x)55 Sm divides R on *d+l). 
Consequently we have constructed the desired JS,W . O 
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Theoren 3. Let (R/, deFN be given. Then dim(R)-£d iff 

(335- selected sequence from CR)(J$?) 

(VneFN)(S n + 1sl n^S n divides T?n on -6d+l). 

Proof: It follows immediately from Theorems 1 and 2. D 

4. Coverings. Let R be a given indiscernibility equivalence on an Sd-

class A; in the sequel all classes will be considered as parts of A. 

The following two propositions are wellknown (seetVl). 

Proposition 1. Let X be an Sd-class then X° is open (w.r.t. R). 

Proposition 2. Let Xcy, X closed, Y open. Then there exists an Sd-cla3S 

Z such that XsZfiY. 

Definition. •fX1,...,X} is a covering (R-covering) m^ 

(VxeA)(3i)(Mon(x)£X.). 
It is called to be an open (closed, Sd) covering if each class X. is open 

(closed, Sd). 

A covering P=-f X1,...,X } is inscribed into a covering 0;= $y..,...,y. } (we 

write P<Q) if (Vi)(J j)(X.c Yj). 

Let P= -{X19...9X } be a covering; we say that the order of the covering 

is just d if 

(i) Every d+2 classes from P have an empty intersection, 

(ii) Some d+1 classes have not an empty intersection. 

Proposition 3. Let *fX],...,)L} be an Sd-covering of order £d. Then the­

re exists an open covering of order £6 inscribed into this. 

Proof: •CX?,...,X°| is the desired open covering. D 

Proposition 4. Let iX 1,...,X \ be an open covering of order A d. Then 

there exists an Sd-covering «£Z-,,...,Z \ inscribed into this such that 

4Fig(Z1),...,Fig(Zmn has order ̂ d . 

Proof: By Proposition 2 there exists an Sd-class Z1 such that 

A-(X 2U...UX r o) £Z l £ X l. 

-tZ?,X2,...,X \ is an open covering inscribed into 4X-,,...,X}. Now we take 

this covering and similarly substitute X2 by Z?, then X-, by Z? and so on. Then 

iZ,t...,l \ is the desired covering. D 

The following definition is an analogy of the classical covering dimension. 
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Definition: We say that Dim(R)^d if an open covering of order ̂ d can 

be inscribed into every open covering. 

Proposition 5. Dim(R).£d iff an Sd-covering of order 16 d can be inscri­

bed into every Sd-covering. 

Proof: Let Dim(R).£d and 4X,,...,X \ be an Sd-covering. From the propo­

sition 3 it follows that an open covering can be inscribed into it and into 

it an open covering of order .=. d by the definition of covering dimension. By 

the proposition 4 there exists an Sd-covering inscribed into the open cover­

ing, and consequently inscribed into 4X,,...,XA, the order of which has to be 

also £ d. 

The converse implication can be proved analogously. D 

Proposition 6. Let 4Y,,...,Y} be a closed covering of order £ d which 

is inscribed into an Sd-covering KX,,...,XyK Then an Sd-covering of order £6 

can be inscribed into iX,,...,X*$. 

Proof: Let Y ^ M Y^keFN} where Y£ are Sd-classes, Y J + 1 £ ^ and Y?<= k. 

for each X. such that Y . £ X . . Obviously for every keFN the system 

-lYp...,Y^ i is an Sd-covering inscribed into -fXj,...,X-i. It suffices to prove 

k k 
that there exists a k such that the order of •CY1,...,Y.Hs -£d. If the order 

of 4Y?,...,Y«i was > d for every kfcFN then we could choose d+2 indices i,,.. 
1 * k k 

...,i . 0 such that Yv 0 ... OY? =0 for cofinally many keFN. Hence Y. f\ ,., 

a+/ H 1oV2 h 
...OY. =0 - a contradiction. D 

*d+2 

Lean: Let S be a totally disconnected indiscernibility equivalence on A. 

Then an Sd-covering of order 0 can be inscribed into every Sd-covering -JX,,... 

...,Xkl of S. 

Proof: Let $S jneFNi be a generating sequence of S such that each S is 

an equivalence. Obviously it suffices to prove that there exists an neFN such 

that 

(Vx€.A)(3i)(Sn -fxUX^. 

Let us suppose it does not hold. Then there exist x e A with the property 

not S" 4xn]r£Xi (i=l,...,k), 

hence also not S* 4xr|}£Xi (i=l,...,kfcm£n). 

Let x=4xoCjoc<'y^ be a prolongation of the sequence 4xn;neFN$ such 

that 

XcC*A' 
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not S " ( x ^ ) £ X . (i=l,...,k&m*oc&m€FN). m oc 1 
Now we take an infinite 0 6 < y , then clearly not Mon3(xotf )sX. for i=l,... 
...,k because Mon„(x^ )=0S" 4x A and X. are Sd-classes. This is a contra-S -*' <i» m <* i 
diction with the presumption *xi >•••»*,-,̂  bei"9 a covering of S. D 

The idea of the proof of the following theorem is due to P. Vopenka. 

Theorem: Dim(R)^dim(R). 

Proof: Let dim(R)=d and S-S-R be the totally disconnected indiscernibili-

ty equivalence which divides R on =£d+l. We want to prove Dim(R)^d. So let 

4Xp...,X,l be an Sd-covering of R. And let 4Z,,...,Z«$ be an Sd-cover of R 

inscribed into the open covering "$X?,...,X?$ (it can be constructed in the sa­

me way as in the proof of Proposition 4), it is then also an Sd-covering of R 

By the previous lemma there exists an Sd-covering 4Y,,...,Y } of the equival­

ence S of order 0 inscribed into 4Z1,...,Z»j. Then clearly P=4 Fig(Y1),... 

...,Fig(Y )} is a closed covering of R inscribed into 4Xp. ..,Xk}. 

Let us prove that P has its order =s d. If the intersection of some d+2 

classes Fig (Y. )0... HFig(Y , ) contained a point x then Mon(x)OY. 
h ld+2 xk 

would be nonempty for all k=l,...,d+2. But it would imply that Mon(x) contains 

more than d+1 different monads of S because 4Y-,...,Y } is a disjoint covering 

of the equivalence S - a contradiction with the presumption that S divides R 

on -=d+l. Hence the order of P is -£d. Now from Proposition 6 and 5 it follows 

that Dim(R)=<d. O 

5. Relation between the covering dimension and the inner dimension. In 

the previous paragraph it was proved that Dim(R)^dim(R) in case R is an in-

discernibility equivalence on an $d-class A. The converse inequality we can 

prove till now only on condition A is a set. But this is not any essential 

restriction because for any indiscernibility equivalence there exists a set u 

such that A=Fig(u), and we can investigate properties of the equivalence only 

on the set u. So let R be an indiscernibility equivalence on a set a. 

We say that a system v which covers a (in the sense a=U4 x;xtvj) is a 

partition of a system u if 

(i) v is a disjoint system (x,yc v & x + y =>- xr.y=0), 

(ii) U-. x;xe v}=U 4x;xeu}=a, 

(iii) u, v can be written as 

u=4u1,...,uflCl, 

v=4v1,...,vacl 
so that v £ u f or 7- =1,..., cc . 
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For a later use we abbreviate 

Fig(v)=UigR(v1),...,FigR(voC)} if v= 1 v^...,^? . 

The following lemma will be a key to prove the converse inequality. 

Leana: Let us have a sequence v of systems which all cover a such that 
vn+l < vn (i'e- (Vxcv n + 1)(3yev n)(xcy)). 

Then there exist partitions t of v„ such that t ,< t . r n n n+1 n 

Proof: Let K v^; cc £ ft} be a prolongation of the sequence v such that 

U 4x;x«-vJ=a and v .< v^ for oo<ft . Let us have all these systems ordetd 

v* = ( a? <L >• 
Put b£ =al -(a/^U . . . U a ^ ) for e=l,...,c£ and 

t„=(b?,...,b^). 
Obviously t« is a partition of v« . Let t . be a partition of v ,, we indu­

ctively define a partition t ^ of the system v^ . Put 

bf =U-ibct ^,;b£af «c (\/e < e)not(b£aoC)}, 
*» OC.+1 & 0 ^n 

t = A h06 h00 % V n Dl »-'*»Ddrtf * • 

Considering that ^aW.i
<v.+1<vo6 and that t , covers a we see that t^ 

also covers a. Because it is a set-theoretically defined construction, the t ^ 

is constructed for each ot & ft and consequently also for cce FN. -ft ;n&FN I 

fulfil our requirements. D 

Theorem: If Dim(R)^d then dim(R)^d. 

Proof: We will prove that there exist relations r and equivalences s 

so that 

R= f .^jn&FN'i . j 

s n + l * V 
s n £ r n 

and s does not divide any R-monad into more than d+1 parts. 

If we have this we will put S=f.s . Evidently S---R is a totally discon­

nected indiscernibility equivalence. In the same way as in the proof of the 

theorem 3.1 we can prove that S divides R on ̂ d+l, consequently dim(R)^ d. 

Let $rn;ncFNl be a generating sequence of R. Because the relation R is 

compact, a finite R-subcovering u can be chosen from the R-covering 

4 r M {x);xtat. Let us define r in the following way: 

rn=Ux,y>;(3 c ьun
)0íx,yî & c)î. 
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We prove that R=^r n. Plainly Rc.nr n because each up is an R-covering. 

On the other hand let <y,z>e.r then there exists xea such that *y,zr£r1= 

1 1 ^ 
= ix\, hence <y,zNer .. It proves r s r j , which implies Ar £R. n—i n n-i »n» n 

From the presumption Dim(R)^.d it follows that a finite set R-covering q 

can be inscribed into any finite set R-covering p so that Fig(q) has ordered. 

More precisely: by the proposition 4.5 a set-covering p' of order ^ d can be 

inscribed into p, into it by the proposition 4.3 an open covering p" of order 

.£ d and into it by the proposition 4.4 a set covering q such that Fig(q) has 

order £ d. The R-covering q is obviously also inscribed into p. 

So let v, be an R-covering such that v,< u, and the order of Fig(v,) is 

^ d. Inductively take v . an R-covering such that Fig(v ,) has order £ d 

and 

v n + 1 <*xny; X £ u n + 1 &y 6 v n \ , 

hence vn+1< u n + 1 and vn+1< uR. 

We constructed a sequence of R-coverings v such that v ,< v and, in 

addition, the order of Fig(v ) is ̂  d. Let t be partitions of v guaranteed 

by the lemma. Obviously no monad is intersected by more than d+1 sets .from t . 

Finally set 

sn=-t<x,y>;(acetn)(-. x,y}sc)3 . 

These are exactly the desired equivalences. D 

6. A local characterization of the dimension. When we study the dimensi­

on of indiscernibility equivalences, there naturally arises a question whether 

it is possible to determine the dimension in a point x of an equivalence from 

the structure of the monad of x, or if it is necessary to know the structure 

of some class containing x (as in the definition of the local dimension). It 

turns out that it depends on the kind of information about the monad. 

9uppose that there is a given R on a set a with a prolongation of a ge­

nerating sequence r= K T. ;oc <. y \ . An information about the structure of the 

monad of x can be 

(a) the class Mon(x), 

(b) the sequence r" -txl, <=c < f, oc# FN, 
2 

(c) the sequence r^ H (Mon(x)) , oc < f . 

We show that the information under (a) and (b) is not sufficient even to 

decide whether the dimension is 0 or 1, but that it is possible to determine 

the dimension from the information under (c) (Theorem 1). 

For the first question it is sufficient to use the example from the para-
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graph 2 (the indiscernibility equivalence of real numbers). It is obvious that 

dim(R,0)=l and dim(S,0)=0, but B"40]=S"-{0]=(-l/n,l/n)> hence also R" *0}=s;40* 
n n oc oc 

(for a suitable prolongat ion ) and the information under (a ) and (b ) is the sa­

me in both cases. 

Now we are going to find a local characterization of the dimension by me­

ans of generating sequences using results from the part 3. 

Lemma: Let g>(o£,/.>) be a set-theoretical formula monotonous in ft (i.e. 

<$ (oc,/0—» <y(°t ,/a+U). Then ( V<* 4 FN)(LV/HFN)yCoc,/3) * 

= s ( 3 n o e F N ) ( V c c 4 FN) <?>(oc ,n Q). 

Proof: The implication <-= is obvious,=> will be proved by contradic­

tion. 

Suppose we have a sequence ocn4FN such that notg>(oC ,n). We prolong the 

sequence and take p+ FN such that ©c^ <£ FN&not cf(oc« , ft) (similarly as in 

the lemma in the part 1) - a con t rad ic t ion . D 

Now we again restrict ourselves to equivalences on a set. We denote 

M=Mon(x)=R"-i x\ 

r= U ^ ; oc < r * 

a prolongation of a generating sequence of an indiscernibility equivalence R, 

S= 4 s^ ;<=<:<: T * 

a prolongation of a generating sequence of a totally disconnected indiscerni­

bility equivalence S. 

Theorem 1. Let d e FN and r be given. Then d im(R,x )^d iff 

( 3 s ) ( 3 T selected from r)( V o c < x ) 

(s, , n M 2 e f v H M
2 & s v H M

2 divides T, D M 2 on ^d+1), 

Proof: Let us denote 

op^oc.X) - s ^ s ^ f l X ^ T , 0 X28tsoCn X2 divides T^ H X2 on ^ d + 1 ) , 

cp(oc, ft) * ^(oc ,r£ i x\) or ccz y or ft 2 f • 

The formula <jp(<x,/3) is obviously set-theoretical and monotonous in ft . By 

the theorem 2.1 and 3.1 we have (for suitably short prolongations s and T) 

dim(R,x)£d «a(3 s ) ( 3 T selected from r)(3nQ€.FN)( Voc )<?(<* ,n ). 

Because g> is set-theoretical and finitely many members of s and T* are irre­

levant, we have( 

dim(R,x,)-£d S (3 s)( 3 T selected from r)(3 n e FN)( Voc ̂  FN)g?(o<; ,n ). 

From the lemma it follows 

d i m ( R , x ) - . - d s : ( 3 s ) ( 3 T selected from r)( VcC +FN)( V p #FN )9>(oc , fl ) 

and because M=R" 4x^=U *r£ -U5 ; ( 3e (y -FN )3 we have 
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dim(R,x)éd s G s ) ( 3 T selected from r)( Vk<? + FN, oč<y) ̂ (cc ,M) 

which is the required statement. D 

We thank P. Vopěnka, A. Sochor and K. Čuda for many valuable remarks 

and discussions to the studied matter. 
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