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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4 (1987)

.EVERYNHERE REGULARITY THEOREMS FOR MAPPINGS WHICH
MININIZE p-ENERGY
Martin FUCHS

Abstract: We consider functions u:0"—a W defined on some n-dimensional
region teking values in the closure of a smooth domain M located in Euclidean
space or a Riemannian manifold which locally minimize a degenerate functional

of the tom“lmlp (p22) under this nonlinear side condition. While the

partial regularity theory was developed in [F1,2), we study here geometric
conditions on M which exclude singular points.

Qx_!lig% p-harmonic problems for vector functions, degenerate functi-
onals, regularity of minimizers, removable singularities, blow-up technique,
‘obstacle problems.

Classitication: Primary 49
Secondary 35010

0. Introduction and results. In this section we fix our asgpmptions and
state the main results: Let D denote a bounded open subset of an n-dimension-
al manifold X, n22; woreover we are given an N-dimensional Riemannien mani-
fold Y embedded in a Euclidean space R-. Suppose further that M is a domain
with smooth boundary and compact closure in Y. For a real number p 22 and
functions u in the Sobolev space H1'P(D,R%) we introduce the p-energy

Ep(u.n)z-,{loul" |
and look at local minimizers of this functional under the nonlinear side con-

dition Im(u)e N a.e., the set Y-M playing the role of an obstacle for the ad-
missible comparison functions. To be precise, we define the restricted Sobo-

lev space
HP(O, W) 2= fu il PO, )6 W a e}
and the class
K= $ua N POO,RE, (,0) € (v,0) tor all ve HP@M, sptlu-v)ee 0}
of local minimizers.
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In [F1,2) we showed that ueK is of class C1 up to a closed ("singular")
set SeD with

S is discrete for n-1¢p<n,

{ H-dim(S)& n- [ pJ-1 for n>p+l,
S=g@ for p2n.

Obviously one is interested in geometric configurations which are general e-
nough to study contact problems and on the other hand being suitably rest-
ricted to exclude singular points. For constrained minimizers of the Dirich-
let’s integral (i.e. p=2) it turns cut that the star-shapedness of the dom-
ain M is a necessary and sufficient condition for proving everywhere regul-
arity. This result was obtained in [ F3,4]) where we also constructed a set M
being in a certain sense a limit of star-shaped domains ahd for which singu-
lar minima occur.

The purpose of this note is to extend the regularity result to the p-ca-
se: the methods developed in [F,3,4] do not apply since we made use of the
Green s function for the linear Euler operator occurring on the left-hand-
sice of the system satisfied by a local minimizer, and for p>2 this Euler
operator is highly nonlinear in Du. To overcome this difficulty we proceed
in the following way: fixing a point x, € D and blowing up the minimizer ueK
at X, we get a radially independent limit Uy satisfying a certain differenti-
al inequality which implies that Y, has to be constant. From this it is easy
to deduce ,l}:hat u is regular in a neighborhood of Xg

In order to formulate our theorem we assume that B:=BR(P) is a regular
ball in the target manifold Y (see [H] for a definition) containing M. We
say that M is geodesically star-shaped with respect to the center P of B if
for any point Q in\the boundary of M the unique geodesic w: [0,1] —» B joi-

nirg P and Q stays in the interior of M for all t<l1.

Theorem: Let M be geodesically star-shaped with respect to the center P
of the regular ball B. Then any local minirizer ugK is of class C1 on the
whole domain D.

Corollary (unconstrained Riemannian casé): Assume that

ueHl’p(D,Y):= {weHl’p(D,RL):w(x) &Y a.eYhas the property Im(u)e B for a
regular ball B in Y and Ep(u,D)iEp(v,D) for all vcHl’p(D,Y) such that

spt(u-v)ec D. Then u is of class Cl(D).

Remarks: 1) If the sectional curvature of Y is &0, then each ball is
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regular (see [H]). 2) 1In the flat case v=R¥e R* the condition of the theor-
em reduces to the fact that M is a bounded star-shaped subset of RN with
smooth boundary.

1. Proof of the theorem. We may assume that D is the unit ball B= Bn(O)
in R" equipped with the flat metric, the general case requires some minor mo-
difications which we indicate at the end of this section. We show that u€ K
is regular in a neighborhood of 0&B. According to the basic regularity the-
orem 3.1 in [F2] this follows from
€)) lim inf ™ [ |0u|P dx=0.

>0 aua»
In order to prove (1) we fix a sequence r, — 0 of positive numbers r; and
colsider the local minimizers ui(z) =u(r; z), zgB. Quoting [F2), Lemma 4.3,
we see (after passing to a subsequence) ui—b u, in Hl’p(B RL) for some func-
tion ug which is radially independent. Clearly (1) follows if we can show
that Duo vanishes.

To this purpose we fix one of the blown up functions vi=uy and introduce
normal coordinates on B with center P. The ball B is mapped on the Euclidean
ball Bg(ﬂ) and M is transformed in a smooth open subset K of BS(O). With
respect to these coordinates the representative of a minimizer € K is a lo-
cal minimizer of the functional

JREMO T LE

(Creek (Latin) indices repeated twice are summed from 1 to (N)) in the class
Hl’p(B:lz), (gik) denoting the metric tensor of Y. Keeping the symbol v for
the coordinate representative of this function we get on account of [F2],
Theorem 2.1, for all test-vectors ¢ ¢ ﬁl’pn L”(B,RN):

/BP g(v,Dv)gij(v)D“_le‘ ¢j dx+ f; gg(VvDV)ngu(V)q‘ViQovlbjd’F

{GOK]K(V) £ ox,
where [v ¢ @K1:= {xeB:v(x)e IK}, g(v,Dv):=(gij(v)Dwv10“vJ)p/2'l; f denotes

a non-negative function growing of order IDulp and Py is the interior norm-
al vector field to the boundary of K.

Let (g j) denote the inverse of (gi .) and replace @ by the test-vector
with components g j(v) QJ Following the lines of [H], proof of Theorem 1.4,
we obtain:
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@ fy pov,0v) [Ove0d - Ay (VRVIG V¥ gl ) ) @30 4 g o,

(‘r}k) being the Christoffel symbuls on Y. Since M is geodesically star-sha-
ped with respect to P it is easy tu show (using LH], Lemma 5.2) that

ey d vyl vl a0
holds for all pointa y in the boundary of K (compare [F4), Section 3). In a
finel step wa use the test-vectur § =g v with @¢ Cé(B), ¢ & 0. In this ca-

s8 the left-hand-side of (2) is non-positive so that (2) turns into a differ-
ential inequality which is also valid for the limit function Uy

I‘PG(uu,Duo) (0u,sD(g ua)-'rik(uu)ﬂ.uéq‘uz' uéldx 40,
We chouse @(x)i=¢(|x|). Since u, is radially independent, the inequality
(3) reduces to
O pg(ug,Du )qtlDu | 'fik(“ )q‘uou.‘u ulldxéo.
According tu LH), the 1.nequulity (6.11), the quentity [...) occurring in (4)

is bounded bslow by a constant times !I‘Jual2 (recall that g takes its values
in the regular ball B) so that (4) immediately implies Du,=0. Q

It D 18 a domain in some n-dimensional Riemannian manifold X we intro-
dune local coordinates BE‘(O)-& U(x,) on a euitsble neighborhood U(x ) e D of a

puint x. @ 0. Then a coordinate representative of we K belongs to the class
H ’p(Bﬁ) and locally minimizes the functional

f. (B, (w)a*® q‘witlz‘wk)”/2 Ve dx,
(1“) being the metric on X, (u“"):-(aa )'1, n-dat(a‘ﬂ). After a change
of coordinates we can arranpge L P (0)-(m and a slight extension of the
blow=up lemma 4.3 in [F2] pives Du,=0 along the same lines es before. Alter-

natively we can qu:m LF1), cha ter 3, or the papar [F, Fl: since X is diffe-
omorphic to the closed ball B,(0) we proceed s in [F, F1, proot of Theorem

1.3, tu see that u,e H"'p(e,?) is actually a local minimizer of

f‘ (9lk(w)q‘w‘q‘uk)9/ 24x

in the restricted Sobolev spuce sv that the Euler system (2) is valid for the
limit function u,. @
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