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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
29,1 (1988) 

DEFINABILITY DEGREES FOR CLASSES 
IN THE ALTERNATIVE SET THEORY 

A. TZOUVARAS 

Abstract. We propose a notion of relative definability using positive 
formulas and study the induced ordering. We show that the degree of every cut 
is minimal in this ordering. If I<J and 3 is semiregular, then the degrees 
of I, J are different. Also, the ordering contains incomparable elements> il-
chains and upper bounds for codable classes of degrees. 

Key words. Alternative set theory, normal formula, positive formula, cut 
of natural numbers. 

Classification. 02K10, 02B99 

§ 1. Definability degrees. Let c/(Z) be a normal formula of the langua­

ge FLy, where Z is a class variable of gp . (For the definition of the terms 

just used as well as of any other from the context of the Alternative Set 

Theory, we refer to [V] . ) q»(Z) is positive in Z, or simply positive, if it 

belongs to the smallest class of formulas which contains the set-formulas, 

the formulas "x & Z" and is closed under the positive operations v ,A,3 , V . 

Positive formulas were introduced in IM03 to be used in inductive defi­

n i t i o n s . Given a formula Q/(x,Z) we put, for every class X 

ry(X)=(x;9(x,X)j 

The main reason of employing positive formulas is that their operator fl 

is increasing, i.e. 

X£Y~~» Г-^(X)
 S
 f^(Y). 

From now on every normal formula used will be positive unless otherwise 

stated. 

Definition 1.1. Let X, Y be classes of the extended universe. We say 

that X is definable in Y iff X= fy (Y) for some 9 . X, Y are equidefinable 

if X is definable in Y and Y is definable in X. 
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Proposition 1.2. The relation "X is definable in Y" is a preorder, that 

is, it is reflexive and transitive. 

Proof. If ^(x,T)s? xeZ, then ri(X)=X. On the other hand, if X= 

= l"L(Y) and Y= T y(W), and putting 

C(x,Z)s<y(x, r y(Z)), 

then 6* is positive in I (cf. CTJ, Lemma 1.2) and X= rj<(W). O 

It follows that equidefinability is an equivalence relation. The class 

[XJ M Y ; Y and X are equidefinable} 

is called the definability degree of X, or, simply the degree of X. 

As usual, we write IXJ^[YJ to denote the fact that X is definable in Y. 

Clearly, ^ is a well-defined partial ordering of the degrees. tXJ<CYj means 

[ X j . i t Y J and tXJ*tYJ. 

Examples. 1) If Sdy is the class of all set-definable classes, then 

tXJ =Sdy iff X€Sd v. We denote by { VJ the degree of the set-definable clas­

ses. Clearly, [VJ*tX3 for every tXJ, that is, a set-definable class is defi­

nable in any class. 

2) The classes X,P(X) (the class of subsets of X) are equidefinable sin 

ce UP(X)=X and the operators P, U are induced by positive formulas. 

3) tFNJ^rai , since FN= { X J X C I I A X sill and the formula xeSLAxsSl 
is positive in XL ( XL is the class of ordinals). 

Proposition 1.3. If F is a 1-1 set-definable function and F"X=Y, then 

X, Y are equidefinable. 

Proof. If F"X=Y, then just note that 

Y=4y;(3x*X)(f(x)=y)},X=^x;(3y€Y)(F(x)=y)}, 

and the defining formulas of X, Y are equidefinable. D 

Corollary 1.4. Any two countable classes are equidefinable. 

Proof. If X, Y are countable, then f"X=Y for some 1-1 function f and 

the conclusion follows from Prop. 1.3. D 

One can see, however, that not all classes of tFNJ are countable. 

A class X is said to be £ ° if it can take the form X= Ui R"{n};n€ FN}= 

=R"FN where R is set-definable. £ -classes were introduced in tMj and are 

the simplest £ -classes from the point of view of definability. In tMj it is 
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shown that 21 4s 21 . 

Proposition 1.5. If X e 2:°-Sdv, then t X]=[FN3 , 

Proof. Let X=R"FN. Then 

x€X«-*(an€FN)«x,n><:R) 

and the r.h.s. formula is positive in FN. Thus tX3.itFN]. 

For the converse consider the set definable function F defined as fol­

lows: 

F(x)=min -toe ;xc R"ocJ . 

Then, clearly, F"X£FN and, since X*Sdy, F"X is cofinal in FN. Therefore 

UF"X=FN and the operator UF is positive. This shows that [FNJ .6[X3. D 

The preceding result can be extended to hold for classes defined as X 

but with FN replaced by an arbitrary cut. 

Let us say that X is a S I-class i f X= UiRMocl ;o t * I }=R" I for some 

set definable class R. Obviously for I=FN we just get 2E0-classes. 

The following generalizes Prop. 1.5. 

Proposition 1.6. If X c2I-Sd y, then IXJ=tD. 

Proof. Similar to that of 1.5. D 

Fully revealed classes 2E -semisets and TT-semisets are totalities of 

classes essentially disjoint (that is, their common elements are just the 

set-definable classes). We shall see that for any two of them, the only com­

mon predecessor is tVJ again. 

First a lemma: 

Lemma 1.7. If (un^neFN
 is an i n c r e a si n9 (decreasing) sequence of sets, 

then for every ? , P^tO^ V " W ( ̂ G %> 0 W ^ 

Proof. The 2L-case is just Lemma 2.3 of [TJ. The proof of the TT-case 

is similar. (Both use heavily the prolongation axiom.) D 

Proposition 1.8. Let Y be definable in X. Then: 

i) If X is fully revealed, then Y is fully revealed, 

ii) If X is 2-semiset, then Y is a 21 -class, 

iii) If X is TT-semiset, then y is a TT-class. 

Proof, i) is immediate from the definition of fully revealed classes, 
while ii), iii) follow from 1.7. • 
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§2. Minimal degrees. We say that the degree IX) is minimal if [X3*-[V3 

and for every <y , either fi*^(X)3 = IV3 or [ rL(X)3 = IX}. 

We shall see in this section that for every cut I, [13 is a minimal deg­

ree. And if I<J and 3 is semi-regular, then £13 4s 13} (hence incomparable). 

Lemma 2.1- Let ^p(x,Z) be a positive formula. Then there is a set-for­

mula Y , strings of quantifiers 5 . and strings of variables x., "y. such 

that 

9(x,Z)<-*(51x1)(3716Z)...(akxk)(IykeZ)f) 

where (3 yeZ) is an abbreviation of (3 ŷ fe Z)...(3 y e - ) , for some n, and 

3 y c Z is the usual bounded quantifier. 

Proof. By induction on the length of positive formulas. If p is a set-

formula, the assertion is vacuous. If <£ s xcZ, then 9 *~> (3 y £ Z)(x=y). 

The in duction steps for the positive operations are immediate. D 

Lemma 2.2. Let I be a cut and suppose the formula (3<oc € I)o^ is given, 

where ^ is a set-formula. Then, there is a set-formula if such that 

(3oc 6 D 9 -*-»-(3QC € I) Y * 

Proof. It suffices to observe that for every set formula g(x") and every 

cut I, 

(3*, e 1)9 (£)*--»(3*, € I) (3S-coc)g»(oo). D 

Lemma 2.3. For any formula of the form (Vx)(3oc6 1)9? , where <j> is 

a set-formula, there is a set-formula y such that 

(Vx)(3cc€.I)<3>-*-* (3oce D ( V x ) ^ -

Proof. Define the (Skolem) function G:V-*N as follows: G(x) = the 

least cc such that ^(x,oc). If the given formula is true, then G"VSI. 

Clearly, G"V is bounded in I, whence 

(Vx)GoceI)9 <*-» (3(3fcI)(Vx)(3oc-</3)cp. 

Putting iy m (3<x. <:fl)<p , we are done. D 

Theorem 2.4. For every cut I and any formula cp , fL(D is a Z I-

class. 

Proof. We have to show that given ^(x,I), we can find a set-formula 

6* such that cy(x ,1) «—* (3 06 6 1)6* . The algorithm is as follows: Write 
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9>(x,I) in the form described in Lemma 2.1. Then, in the subformula 

(3 oCkeI)iy contract the string of existential quantifiers to a single ex­

istential quantifier 3 oc e I by the help of Lemma 2.2. Then, using Lemma 

2.3, carry, step by step, the quantifier 3 oc € I in front of the string 

Q. x. . This way, 3 oc € I joins the string J *̂i<_i * *• Contract again and 

so on. It is clear that the finally resulting equivalent formula is as re­

quired. D 

Theorem 2.5. For any I, II] is minimal. 

Proof. By Theorem 2.4 1^(1) is a ZI-class for any <p . And by Prop. 

1.6, either r^(I)tSdv or 11^(1)3 = U 3 . U 

Remark. P. Vopertka pointed out that, as regards semisets, the converse 

of Th. 2.5 is also true, that is, every minimal degree is the degree of some 

cut. In fact, given the semiset X, the cut I=*fot;(3 x£X)(|x|= oc )} (a kind 

of "inner measure" of X) is positively definable in X, hence I D £ t XI. 
To show that lI3-^tJ*J in the case that I<J and J is semi-regular, we 

need some terminology. 

Let I be a cut, X is an I-class if there is a 1-1 function f such that 

Ifidom(f) and X=f"I. 

A class X is I-revealed if for every I-class Yc X there is a set u such 

that Y £ u £ X . 

Recall that a cut I is semi-regular if for every oc 6 I and every f,f"oc 

is not cofinal in I. 

Lemma 2.6. a) Let I< J and J be semiregular. Then, every J-class is 

I-revealed. 

b) Let X be a (proper) 2. I-class. Then, for some K.£l, X is not K-re-

vealed. 

Proof, a) Let X=f"J, Y=g"I, with f, g 1-1, such that Y£X. Then, 

(Voc « l ) ( 3 p * J)(g(oc)=f(/i)), 

and if we define h by 

h(oO=min{/3 ;g(«0=f(/3)}, 

then h is 1-1 and h"IS J. Since J is semi-regular, there is some y 6 J such 

that h"I £ T • Then it is easy to see that YSf'TTSX. 

b) Let X= U€R"^o&} ;oceI} be a <EI-class. Define recursively: 

f(o), f(*+l)=min-C/i ;R"{&} - R"«£f(cc)}*0}. 

Since X is proper (non set-definable), if K=F~ (I), then f"K is cofinal in I 
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and Kil. Put 

g(oc) = least element of W'lt(<* +1)? - R"«ff(<*)}. 

We easily see, then, that there is no u such that g"K£u£X, which shows that 

X is not K-revealed. D 

Theorem 2.7. If I<3 and 3 is semiregular, then 113 4= 131. 

Proof. Suppose II3=t33. Then 3= l~L(I) for some tp . By Th. 2.4, 3 is a 

^El-class, hence (by 2.6 b)) not K-revealed for some K£l. But 3 is a 3-

class, hence (by 2.6 a)) K-revealed for every K<3. A contradiction. D 

Remark. Concerning Theorem 2.5, K. Cuda made the following comment: 

The theorem is no longer true if we replace the cut by an arbitrary 

class. That is, we can find classes X, Y such that Y= f"L(X) but Y cannot be 

put in the form Y= U*R"tx1;xf.X)=R"X for some RcSd v (cf. tuj). Indeed, take 

the classes 

Y=FN*(cc-FN) and X=(FNx*0i) u ((<* -FN)~{1*) 

for some ot> FN. 

Then, clearly, m r f t X ] . Suppose Y=R"X. 

Then, there are sets r,, r„ such that Y=rVFNur!J(oc-FN). Define 

f x ( f i )=min-tY ; ( 3 < T ) « c r , r > € r j f l ) 

f 2 (6)=max - [ r ; (3<f )«Y,cT>€ r£(cc-/J). 

Then, 

(Vn€FN) ( f1 (n )€ot -FN) 

and 

( V r e o C - F N ) ( f 2 ( r ) € F N ) . 

Hence, there are /Scot-FN , keFN such that 

(VneFN) ( f 1 (n )> f l ) 
and 

( V r c « c - F N ) ( f 2 ( r ) < k ) . 

Therefore r£FN£FNx(oc-fl), r^(oc -FN) £ k x (oc -FN). It follows that 

FN x (oc -FN)S FN x(oc-/3 )u kx (a -FN) 

which is false. 

§ 3. Incomparable degrees and chains of degrees 

Theorem 3.1. For any tX3#£V3, there is a Y such that [XI, IY3 are in­

comparable. 
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Proof. Suppose first that X is real (cf. t C-V-1 for the notions of real 

and imaginary c l a s s ) . It suffices to choose a Y fully revealed and Y^Sdy. 

Then for every <f , r ^ ( X ) is real. If r L ( X ) is not revealed, then 

l*L(X)^=Y. If r \ - (X ) is revealed, then it is a TT-class, thus again 4- Y. 

On the other hand, r ^ ( Y ) is fully revealed, therefore 4« X. 

Now, let X be imaginary. There are codably many real classes definable 

in X, while all real classes are uncodable. Choose a real Y not definable in 

Y. Then tX3, tY3 are incomparable. D 

Theorem 3.2. For any X there is a Y such that CX3<tY3. 

Proof. Given X take Z so that X, Z be incomparable. Put Y=(XxC0}) u 

u ( Z x t U ) . Then obviously tX3£tY3. Suppose tY3.4tX3, that is t"^(X)= 

=(Xx*0\)u(Zx{l}) . Then 

xcZ«e-**<x,l> € P y ( X ) 

and the r.h.s. formula is positive in X. Thus tZ3*CX3, a contradiction. 0 

Corollary 3.3. Any codable class of degrees has an upper bound. 

Proof. Let >CX"-Ccl;c€ C$ be a codable class with code <X,C>. Then, obvi­

ously, tX"-ic11 *tX3 for any ceC. D 

Corollary 3.4. i) For any X there is an SI-chain of degrees above X. 

i i ) The class of degrees above 1X3 is uncodable. 

i i i ) The class of degrees below 1X3 is codable. 

Proof, i ) It follows from 3.2 (for the successor s t a g e s ) and from 3.3 

(for the limit s t a g e s ) . 

i i ) If W = •CtY3;tX3£tY3} were codable, there would be, by 3.3 an 

upper bound tW3 of W and, by 3.2, a tU3>tW3. Then IU3 c W l , while 

IU3>IY3 for every tY3 € W-, a contradiction. 

i i i ) Immediate from the fact that the class of positive formulas is co­

dable. 
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