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Topological hulls revisited 

JURGEN KOSLOWSKI 

Abstract. Methods developed for the study of general closure operators are used to con­
struct various topological hulls for concrete categories. In particular, the notion of con­
cretely cartesian closed topological hull a concrete category over a cartesian closed base is 
generalized to arbitrary base categories. We clarify why this concept coincides with the 
one of universally topological hull for concrete categories over the terminal category, i.e., 
for pre-ordered classes, but not in general. The new notion is characterized in terms of 
injectivity in a suitable quasi-category. 

Keywords: Concrete category, (universally) topological category, final completion closure 

operator, closure commuting with pullbacks, (concretely) cartesian closed category 

Classification: 18D15,18B25 

0. Introduction 

In the following we will concerned with concrete categories over a base category 
X, i.e., pairs (-4, U) consisting of a category a and a faithful functor A -* X. For 
convenience, and to simplify the presentation, we also require U to be amnestic, i.e., 
every .A-isomorphism whose 17-image is a identity must be an identity. This forces 
the 17-fibres, i.e., the pullbacks of U along the ^-objects 1 —• X, to be partially 
ordered classes, not just pre-ordered ones, (a, U) is called fibre-small if all (7-fibres 
are sets. Without loss generality we assume the hom-sets (A , B)A to be subsets of 
the hom-sets (AU, BU)X_ for all ,4-objects A and B. 

Recall that an ,4-sink (K,A), i.e., a family K of ,A~morphisms with common 

codomain A, is called Vr-final, if every ^-morphisni AU —• BU is an ,4~morphism 
from A to B, provided that gU • / is an .4-morphism from the domain of g to B for 
each g £ K. (A, U) is said to be topological, if each (possibly large) family of objects 
of the comma category (cf. below) a/U with common codomain has a (/-final lift. 

For a base category X let cCAT/X denote the full subcategory of the quasi-
category CAT/X, whose objects are the concrete categories over X\ morphisms 

from (.A, U) to (B, V) are functors A —> B which satisfy FV = U. We say that F is 
finally dense, if each 5-object is the codomain of a V-final sink with members that 
have domains in the image of F. If the functor F is full (and hence equivalent to a 
full embedding), the cCAT/A'-morphism F is called an extension. We say that F 

is essential, provided that a cCAT//f-morphism (B,V) —• (C,W) is an extension 
iff FG is one. 

If X is cartesian closed, (.4, U) is called concretely cartesian closed, if U preserves 
binary products, exponentiantion and evaluation. Consider the non-full subcate­
gory Xfp of cCAT/X whose objects are fibre-small and have (domains with ) con­
crete finite products, and whose morphisms are those CAT/A'-morphisms which 
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preserve concrete finite products. A variant of the dual notion of final density plays 
a role here. A cCAT/A'-morphisms (.A, U) —• (B, V) into a concretely cartesian 
closed category (B, V) is called cartesian dense, if the powers [AF, A'F], A, Af € A-
06 , are finitely dense in B. 

0.00 T h e o r e m , (cf.[11]) 

(0) An Xfp-objects is injective with respect to extensions iff it is a concretely 
cartesian closed topological (=CCCT-) category. 

(1) An extension in Xfp is essential iff it is finally dense and cartesian dense. 
(2) Injective hulls in Xfp are CCCT-hulls. 

If X is terminal, i.e., has just one morphisms, cCAT/X is the quasi-category 
of partially ordered classes and order-preserving functions, while Xfp is just the 
category mSLat of meet-semilattices and meet-preserving functions. Theorem 
0.00 then specializes to 

0.01 Corol lary. (cf[Q3] and /09/J 

(0) A meetsemilattice is injective with respect to extensions iff it is a locale, 
i.e., a complete Heyting algebra. 

(1) An extension in mSLat is essential iff it is supremum-dense and cartesian 
dense. 

(2) Injective hulls in mSLat are locale-hulls. 

Two facts indicate that it may be possible to relax the assumptions for Theorem 
0.00. First, the construction of CCCT-hulls, which dates back to [02], explicitly 
avoids using the cartesian closedness of the base category X, but rather works with 
the finite products of X. This is reflected by the fact concrete products are the 
important notion in the definition of the quasi-category Xfp. Secondly, for meet-
semilattices there is another quite different construction of locale-hulls in [03]. Both 
constructions generalize to arbitrary posets where they still coincide. Can one drop 
the requirement that (A, U) has concrete finite products and still form something 
like a CCCT-hull? If so, is Theorem 0.00 still true in a larger subcategory cCAT/X 
than Xfp? We will answer both of these questions affirmatively. 

The second construction of locale-hulls for posets can be viewed as an adaptation 
of the sheafication construction, known from topos theory, where Set is replaced 
by the symmetric closed monoidal category 2. A different point of view is present 
in [01]. Among the topological categories over X those for which final sinks are 
preserved by pullbacks are called universally topological For a finitely complete base 
X consider the non-full subcategory Xps of Xfp whose objects A —• X admit initial 
lifts for regular monomorphisms X -5 All, and whose morphisms preserve such lifts. 
In [01] the injective objects in Xp9 with respect to embeddings are characterized as 
the universally topological categories. For terminal X this specializes to parts (0) 
and (2) of Corollary 0.01. But as in Theorem 0.00, the general poset case is not 
covered. 

Both types of topological hulls, as well as others, can be constructed by the 
same general method, which is derived from the study of closure operators on the 
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functor category [A,Setop]op. The connection between such closure operators and 
final completions is investigated in Section 2, while final completions with special 
properties are constructed in Section 3 . 

Section 1 reviews concrete categories from the perspective of functor categories 
to set the stage for Section 2. Section 4 then indicates how to handle the concept 
of injectivity (with respect to extensions) in a subcategory Xf, of cCAT/X which 
properly contains Xfp. 

For functors X —• Z <— y the objects of the comma category F/G are all triples 
(X, h, Y) with X e X - Ob, Y e y - Ob and h € (XF, YG)Z.. A morphism from 
(X,h,Y) to (K ' , / i ' ,Y ' ) is apair ( / : g) £ (X,X')Xx(Y,Y')£ with fF-k' = h-gG. 
The domain functor F/G —> X and the codomain functor F/G —• y map ( / : g) to 
/ and g, respectively. 

AY denotes the functor category [A,Setop]op ~ [.AopSei]. We call the images of 
A 

A-objects under the Yoneda embedding A -4 AY principal A-ideals and write Av 

for A Ay, A G .A-Ob. Notice that monomorphisms in a functor-category., over Set 
are pointwise such. We use the term sub functor for a monomorphism in AY which 
is pointwise an inclusion. Subfunctors of principal .4-ideals are called A-sieves. 

The lower Yoneda representation X -4 AY of a functor A —• X maps / 6 (X, Y)X_ 
up 

to UXy —> UYy. Clearly, Uy as the composition of the Yoneda embedding Xy with 

XY -4 AY (i.e., left composition with U) preserves limits. 

In a category C a morphism A A A' is called left-orthogonal to B —• B', written 

Of primary importance will be the notion of orthogonality (cf. [13] and [16]). 

i a category C a morphism A A A1 is < 
a Lb, if for every commutative diagram 

A —l—> B 

(0-00) a I j * 

A' • B' 

there exists a unique diagonal A' —• B making both induced triangles commute. 
This notion generalizes to sinks a and sources 6; of particular interest will be the 
case when b is empty. 

We use the set-theoretical foundations of [10], but will talk about "collections" 
instead of "conglomerates". 

1. Concre te categories 

For a concrete category (A, U) over X define the quasi-category (A, U)9 of U~~ 
sieves to be the full subcategory of AY/UV spanned by all subfunctors of Uy-images 
of ^-objects. Ua denotes the restriction of the faithful and amnestic codomain 
functor to (A,U)9. Notice that (A,U)9 still is Ioca% small, i.e., admits a hom-
functor into Set. In fact, ((A,U)9,U9) is precisely Herrlich's category (A~~2

yU"~2) 
of [07], just viewed from a slightly different perspective, and without the smalmess 
constraint on A. 
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We will usually suppress the domains of subfunctors and write (m,X) instead 
of (M,m,X) for (A,U)a~objects. (A, U)a-~moTphkms are already determined by 

their ^-component, so we may reduce (m,X) --> (n,Y) to (m,X) --V (n ,F ) . 
The canonical embedding Ua of (A,U) into ((A,U)aU9) maps / € (A,B)£ to 

(AU,AU) f-% (Bu,BU), where Au denotes the pointwise inclusion of Ay into U(AU)y. 

Moreover, if (A t t,ACl) -4 (m,X) is an (-4, tl)a-morphism, g € AM is the Yoneda 
image of / . We call {/-sieves of the form (AU,AU) principal U-ideals. Notice that 
(k - Au, AU) is a Il-sieve whenever (k, A) is an ,4-sieve. 

We will mainly be concerned with the left-orthogonality of (A, l/)5-morphisms 

of the form (m',X) --* (m,X) with respect to (-4, (7)a-objects (n,Y), viewed as 
empty sources. 

If one adds all those morphisms to an .4-sink (K, A), which factor through one 
of its members, the resulting sink (k, A) is L7~final iff the original sink is. But k 
can be interpreted as an ^4-sieve, namely as the second factor of the (epi-sink, 
mono)-factorization of the (AY-image of the) original sink K in AY> 

1.00 P ropos i t ion . The A-sink (K,A) is U-final iff the (A,U)8-morphism 
(k : AU) is left-orthogonal to all principal U -ideals. 

The dual notion of ?7—initiality does also have a nice internal interpretation in 

AY' An ,4-morphism A —> B is (7-initial iff Ay <—• U(AU)y is the pullback of 
Bv *-> U(BU)y along U(fU)y. Sources can be handled by intersections of pullbacks. 

We leave it to the reader to express notions like "(A, U) is topological " o r "F 
is finally dense" in these terms, and to discover how simple the diagrams involved 
are. 

Our considerations so far even apply to concrete quasi-categories over X, as long 
as they are locally small. However, such objects need not belong to cCAT/X, hence 
we will continue to use (-4, U) for an ordinary concrete category over X. 

We conclude this section with a technical result. 

1.01 Lemma. If all pullbacks of an AY-morphism K —• L along AY-morphisms 
of the form Ay -» L,A 6 A—Ob, are U-final, then m L Bu in AY, for every 
A-object B. 

2. Final comple t ions via closure operators 

This section deals with the counterpart of categories of sheaves in the setting of 
concrete categories. 

2.00 Definition. If F is a concrete functor from (.4,17) into a concrete (locally 
small quasi-) category (B, V), the pair (F,(B,V)) is called a final (quasi-) comple­
tion, if F is finally dense and (B, V) is topological. 

In particular, the canonical embedding of (.A, 17) into ((-4, U)s, Us) is a final 
quasi-completion, in fact is the largest one, cf.[07]. All others can be obtained by re­
flective modifications [0$], i.e., as concretely reflective subcategories of ((A, U)s, Us) 
which contain (A, U). 
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The (fs-fibres of (A, U)s are (potentially large) complete lattices. Therefore 
a concrete reflector can be thought of as a family of closure operators, one for 
each fibre, which are compatible in the sense that puUbacks of closed U-sieves are 
closed. (This is a very "topological" concept.) However, closure need not commute 
with puUbacks. A generalized notion of closure operator on nice collections of 
monomorphisms has been investigated in [06] and [14]; its roots go as far back as 
[04], cf. also [05]. In the following we combine both points of view. 

2.01 Definition. A closure operator on a concrete quasi-category (B1V) is a pair 

(£, T) consisting of a functor B —• B and a natural transformation V —* T which 
satisfy TV = V and 6V = B. We write T-Fix for the collection of fixed points of T, 
also refered to as T-closed B-objects. (8, T) is called idempotent, if T is idempotent. 

Closure operators are partially ordered by the pointwise partial order on the 
fibres. (Beware: this means that smaller closure operators have more closed ob­
jects.) Every closure operator on a topological category (#, V) is dominated by a 
least idempotent one, its idempotent hull. 

Let M be the collection of all AY -monomorphisms which are pointwise inclusions, 
i.e., subfunctors, viewed as a full subcategory of the comma category A/A. We write 
8Q and d\ for the restrictions of the domain functor and the codomain functor to 
M, respectively. Us turns out to be a pullback of d\ along Uy 

(A,U)S • M 

(2-00) u'[ | * 

X • AY-
v, 

Now (M,d\) is topological, and closure operators on M can be pulled back to 
(•4, U)s- The problem with this approach is that we do not know whether every 
reflective modification of (A, U)s arises in this way. However, it is convenient to be 
able to work in JVf, or AY for that matter. 

In the following, (8, T) always will be an idempotent closure operator on (A, U)s> 

We denote the T-image of (m, X) by (mr, X). Each U-sieve • «—> UX9 factors as 
t <—• * c> UX9. Notice that 6 is pointwise mono. While the second factor is 
T-closed, in general it does not make sense to caU the first one dense, unless it has 
a codomain of the form UZy for some X -object Z. However, a notion of relative 
density can be defined in this setting. 

2.02 Definition. An (A,U)s-mono (m',X) (*-^° (m,X) is called relatively T-
dense, if m'T = mr. 

2.03 Proposition. 

(0) An (A,U)s-™>ono (x : X) is relatively T-dense iff(x : X) ± (n ,F) for all 
T-closed U-sieves (n, Y). 

(1) A U-sieve (n ,F) is T-closed iff (x : X) ± (n,Y) for all relatively T-dense 
( A U)s~monos (x : X). 
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PROOF : Use the fact that mS is always relatively T-dense, since T is idempotent. 
• 

The orthogonality relation now induces a Galois correspondence between collec­
tions A of (.4, U)s~monos, and collections S of [/-sieves. A x and Ex denote the 
respective Galois-images. 

2.04 Proposition. For every collection A of (A, U)s~monos A x is the collection 
of fixed points for a unique idempotent closure operator on (AyU)s-

PROOF : Clearly, A x is closed under limits, in particular intersections and pull-
backs. For a [/-sieve (m, X) we define (mT, X) to be the smallest [/-sieve in A 1 

containing (m,X ) . This is easily seen to be an idempotent closure operator. The 
uniqueness foUows from Proposition 2.03. • 

2.05 Examp le . A concrete category (.4,17) over the terminal category 1 is just a 
partially ordered class (A, C). It is topological iff it is a (possibly large) complete 
lattice. «4-sieves can be interpreted as pairs (K, a), where K C A is a lower segment 
and a € A is an upper bound of K. Such a pair is [/-final iff a is the supremum of K. 
Subfunctors, in particular [/-sieves, have the terminal object of Ay as codomain, 
hence they may be viewed as lower segments of (A, C). Moreover, the only [/-
initial morphisms are the identities. Observe that the notions of principal A-ideal 
and principal [/-ideal coincide. (A, [ls)-monos correspond to pairs (Af', M) of lower 
segments with M' C M, and the relation (M ' ,M) _L L then means that M C L iff 
M' C L. Any collection of such pairs determines a closure operators in the usual 
sense, i.e., order-preserving, extensive, idempotent functions on (A , C). 

Now we have a bijective correspondence between idempotent closure operators on 
(i.e., reflective modifications of) (A,U)s and Galois-closed collections of (A,U)s~ 
monos. The idea for constructiong special final completions of (A, U) will be to find 
suitable collections A which satisfy A^ = A. 

3. Topological hulls with prescribed p roper t i es 

We want to develope a concrete analogue of the topos-theoretic idea of sheafi-
cation. While our approach is not restricted to modal closure operators, i.e., those 
where closure commutes with puUbacks, we start with what could be considered as 
the concrete notion of a Grothendieck topos. 

Definition, (cf. [00, Definition II.7]) (A,U) is called universally topological, if 
it is topological, and [/-final .4-sieves are stable with respect to puUbacks along 
(.Ay-images of) ^-morphisms. 

(In [01] the term strongly finally complete is used instead.) It is easy to see that 
the second condition is equivalent to requiring that the [/-final .4-sieves form a 
Grothendieck topology. In fact, every universaUy topological final quasi-completion 
(0,17) of (A,U) can be obtained via a suitable Grothendieck topology on A, i.e., 
an idempotent modal closure operator on JVt, via a puUback as outlined in the last 
section, cf. CoroUary 3.08. 

In order to compare the concepts of universally topological and concretely carte­
sian closed topological category, we need an internal characterization of CCCT-
categories which can be formulated without reference to the cartesian closedness 
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of the base category X. Fortunately such a characterization is well known. Re­
call that (,4, U) is a CCCT-category over a cartesian closed base, if U preserves 
binary products, exponentiation and evaluation. As a consequence of Wyler's taut 

lift theorem, this is equivalent to requiring that A —* A preserves [/-final sinks 
for every 4-object C [00, Theorem 1.7]. This characterizations allows us to re­
place cartesian closed bases by bases with finite products. To eliminate the need 
for finite products as well, we extend the notion of orthogonality to accommodate 
certain #y-morphisms, instead of just A'-morphisms. This allows us to generalize 
the notion of [/-finality to certain ,4y-monos which are not 4-sieves. 

3.01 Definition. The product (t,C) x (k,A) of two ,4-sieves (in AY) is called 
U-final, if the product (t : CU) x (k : AU) is left-orthogonal to all principal U-
ideals in the sense that for every *Vy-morphism (CU)y x (AU)y --+ (BU)V the 
composition (Cu xAu)Ug factors through Bu if (t x k) • (Cu xAu)-Ug does. 

3.02 Definition. (*4, U) is called a CCCT-category, if it is topological, and for 
every [/-final 4-sieve (k,A) and each ,4-object C the product (Cy,C) x (k,A) is 
[/-final. 

Notice that Cv x k is just the pullback of k along the projection Cy x Ay —• Ay. 
If the product of C and A does not exist in A, this pullback is not an ,4-sieve. 

3.03 Proposition. Every universally topological is a CCCT-category., 

PROOF : 

If (A, U) is universally topological, the [/-final .4-sieves form a Grothendieck 
topology for which all principal [/-ideals are closed. The claim follows, since any 
pullback of dense 4y-morphisms is again dense. • 

Definition 3.00 can be weakened by restricting the class of .4-morphisms, along 
which pullbacks have to preserve [/-finality. Particularly interesting is the class of 
[/-initial monos. This leads to the notion of hereditary topological category, cf. (00, 
Remarks II.3(iii) and (iv)]. 

3.04 Examp le . A complete lattice (A, C) is universally topological iff for every 
lower segment K with supremum a every lover bound b of a is the supremum of its 
lower bounds in K. But every lower bound 6 of a is of the form c n a for some c, 
so this condition is equivalent to (A, C) being a CCCT-category over 1, i.e., finite 
meets distributing over arbitrary joins. So the reason that both concepts agree for 
partially ordered classes in that here all morphisms are projections. On the other 
hand, every complete lattice is hereditary topological. 

The final quasi-completions of (A, U) form a (possibly large) complete lattice. 
The smallest element is the Dedekind-MacNeille completion, (A"~4, U~4) in the ter­
minology of [08]. Are there minimal final quasi-completions of the types discussed 
above? Since all three types are defines by similar conditions involving pullbacks of 
final sieves, we use a unified approach. For the Dedekind-MacNeille completion no 
pullbacks have to be considered. 

If (B, V) is obtained from ((,4, U)s, Us) by means of a closure operator T, we 

need to characterize V-final ^-sieves R *—> (m, X)y. Consider the smallest ,4-sieve 
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(f,X) through which every ^y-morphism • <-* UY* ^ UXV with ( n , F ) G B-
Ob and h € (n,Y)j? factors. Clearly, (r,X) —* (m,X ) . But by construction 
R «-» (m,X)» -~> VX» factors through (rT,X)* <-+ VK», hence the V-finality of 
r implies that (m,K ) is the ^-reflection of ( r ,X) . So in order to guarantee that 
V-finality of r implies that (m,X) is the B-reflection of ( r ,X ) . So in order to 
guarantee that V-finality is preserved by pullbacks along certain BY morphisms, 
loosely speaking r-closure needs to commute with these puUbacks. 

The only other condition we have to meet is that principal IMdeals have to be 
closed. This lead us to define collections of (*4, (J)s-monos as follows. 

3.05 Definition. Let (m,X) -+ (m,X) be an (A, U)s-mono. 

(0) (x : X) € AD iff (x : X) is left-orthogonal to every principal U-ideal. 

(1) (x : X) € Av iff for every (.4, Ll)5-morphism (t, Q) (^? } (m,X) the pullback 
of (x : X) along (p : q) is left-orthogonal to every principal CMdeal. 

(2) (x : X) € A H iff for every Us~initial (A, tI)5~morphism (t,Q) ( - f (m,X) 
the pullback of (x : X) along (p : q) is left-orthogonal to every principal 
tMdeal. 

(3) (x : X) e A c iff for each U-sieve (t, Q) the product (tdo : Q) x (x : X) is 
left-orthogonal to every principal CMdeal. 

We write r£>,rV,rLr and Tc for the idempotent closure operators induced by 
A £ » , A I / , A H and A c , respectively, cf. Proposition 2.04. While A n is Galois-
closed simply by definition, and clearly induces the Dedekin-MacNeille completion, 
an explicit proof of this fact will be useful to illustrate the other three cases. 

Before proceeding with the main result of this section, we simplify the descriptions 
of Ay, A # and Ac- For A c , this relates our construction to the one in [02], cf. 
also [15]. 

3.06 Lemma. 

(0) (x : X) 6 Ay if every pullback of (x : X) along an (A, Us)-morphism of the 
(etc) 

form (CU,CU) -+ (m,X) is left orthogonal to each principal U-ideal. 
(1) (x : X 6 A H */ every pullback of (x : X) along an (A, U)s~™,orphism of the 

form (k,CU) (-Vc) (m,X), where (CU,CU) --> (k,CU) and k is the pullback 
of m along Uc*, is left orthogonal to each principal U-ideal. 

(2) (x : X) € A c if every product of the form (Cv : CU) x (x : X) is left-
orthogonal to each principal U-ideal. 

P R O O F : 

(0) l£(x : X) $ At;, we may assume that (x : X) 1 (BU,BU) fails for an A-
object B and an (.4, !7)s-morphism (m ' ,X) A (BU,BU). Hence for some 

C* -+ mdo the Yoneda-image CU --> X of c • m composed with s does not 
belong to (C, B)£ Therefore the puUback of (x : X) along (c : c) fails to be 
left-orthogonal to (BU,BU). 
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(1) As in (0), just replace (c,c) by (h,c), where h is the .4y~pullback of Uc" 
along m . 

(2) If (x : X) £ Ac, there exists a (7-sieve (t ,Q), an ,4-object B, and an 
AV-morphism Qy x Xy A (BU)y such that (t x m!) • £/$ factors through 
By <-* U(BU)y, but (t x m) . Ils does not. Thus one can find an AY~ 
morphism Cy -^ (t x m)do, such that the Af-morphism CU —> BJ7 induced 
by # • (t x m) - Us does not belong to (C, B)£. The composition of g • (t x 
m) with the projection onto UQy has the Yoneda-image CU —» Q. Now 

(CIO* x K» ^ ' l ^ * (£C7)» witnesses the failure of (Cy : CU) x (x : X) to 
be left-orthogonal to (BU,BU). 

• 
Recall that in AY the notions of epi-sink and of monomorphism can be handled 

pointwise. In particular, AY is an (epi-sink, mono)-category, and epi-sinks in AY 
are pullback-stable and effective in the sense that they are colimits of their kerneis, 
which are the diagrams generated by forming the pullbacks of all pairs of morphisms 
in the sink. 

3.07 T h e o r e m . 

(0) The fuii subcategory ((A,U)D,UD) of ((A,U)S,US) spanned by the TD~ 
closed U-sieves is the Dedekind-MacNeilie completion of (A,U). 

(1) The full subcategory ((A, U)u, Uu) of ((A, U)s, Us) spanned by the Tu-closed 
U-sieves is the universally topological hull of (A,U). 

(2) The full subcategory ((A,U)H>UH) of ((A,U)s,Us) spanned by the TH~ 
closed U-sieves is the hereditary topological hull of (A,U). 

(3) The full subcategory ((A,U)C,UC) of ((A,U)S,US) spanned by the TH-
closed U-sieves is the CCCT-hull of (A,U). 

PROOF : 

For i € {D, U, H, C} and a Il-sieve (m, X) define m^i to be the pointwise union 
of all [/-sieves (m1, X) with m = x-m! and (x : X) € A{. Since unions are effective, 

the induced (*4, lJ)s-morphism (m, X) -V, ( m ^ j , X) is left-orthogonal to every 
principal Il-ideal. 

We first show that (rrnpi : X) € Aj. For i = D this is trivial. For i = U consider 
(cic) 

an (.4, (7)5~morphism (CU,CU) -W (m&u ' X). Every factorization m = x -m' 
with (x : X) € Au induces a unique factorization mtpu = x • w. Form the foUowing 
pullbacks in AY-

(3-00) J»| L and «j [* 

Cy • (mVu)do • > • 
c d 

Clearly, (q : CU) is the pullback of (x : X) along (p-Cu, CU) ( ^ } (m'X) and hence 
belongs to Ay. Since the defining effective sink for m^u - n AY pulls back to an 



222 J.Koslowski 

effective sink along Cy A (m^fu)do, the pullback (q • p : CU) of (nupu : X) along 
(c : c) is left-orthogonal to every principal tl-ideal. For i = H the same reasoning 
works if (c : c) is replaced by (Ji : c), where /i is the pullback of Uc9 along m^Lr in 
AY- For i = C the argument is similar. 

In order to show that # , is an endo-functor on (A, U)s, consider an (A,U)s~ 

morphism (n <Y) A (m, X).Let ((r, 5), t) be the (epi-sink, subfunctor^factori­
zation of ( n ^ t • Ugy, m) 

(3-01) 

We have to show that (s : X) € Aj . For i = D this follows since (n<£>rj> : Y) € 
A D and (r,a) is an effective epi-sink. For i = U consider an (A, l/)s~niorphism 

(c:c) 
(CU,CU) --» (t,X) and form the following pullbacks in AY'-

(3-02) 

L 

4 
U(CU)y 

Uc' 

-> UYy к > (nФrj)ðb 

Ь' ^ Ą [r 
Cy > tдo. UXy 

These induce a unique K A JL with q • g' = r - Cu and g • c' = c • ny?rJ. Let ? 
be the puUback of s along c, and let be the puUback of n<pu along c. Clearly, p, f 

factors through s. Any *4Y-morphism Ay —* K now induces a unique t/(.,4(7)y A X 
with A* • a = a • g. Let At/ —> Y and A(7 —> CI7 be the Yoneda-images of a • g' 
respectively. Now the puUback (v : AU) of (n<pu • Y) € ArJ along (a • c : b) is 
left-orthogonal to every principal (7-ideal, and (a • f: d) is an (.4, l7)s-morphism 
from (A*,AU) to (C*,Cl/).Since the sink (r,s) is left-orthogonal to all principal 
CMdeals as well. Hence (s : X) £ Ay, as desired. For i = H we replace (c,c) 

by (k,CU) -^ (*>-K)> where k is the pullback of t along Uc*. Moreover, we need 

the fact that the sink consisting of the puUbacks a of U(AU)y A L along K A X, 
where A* A K", is an epi-sink and hence effective. The case i = C requires another 
lengthy but similar diagram chase. 

By construction it is clear that Af- = $i -Fix, i.e., # t = T,, that puUbacks of 17,-
final (.4, J7)t—sieves along the appropriate ((-4, l/) t)y-morphism are again I/,—final, 
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and that T, is the largest closure operator (in the pointwise ordering) with these 
properties. Therefore among those it has the smallest collection of fixed points, 
which constitute the desired topological hull. • 

There always exits a largest Grothendieck topology Jy on A such that all principal 
[/-ideals are Jr/-closed. Jr/ consists of all those ,4-sieves ( j , A) with the property 

that for each -4-morphism C —+ A the pullback of j along / * is [/-final, cf. [14, 
Theorem 3.08]. Let TQ be the restriction to (A, U)s of the idempotent modal 
closure operator on M generated by J(j. In view of Lemma 1.01 we get 

3.08 Corol lary . Tu = TG. 

This result justifies our earlier assertion that universally topological categories in 
the context of concrete categories play the role Grothendieck topoi play for ordinary 
categories. 

4. Injectivity a n d C C C T - h u l l s 

It is easy to verify Theorem 0.00 when X just has binary products without being 
cartesian closed; the proof in [11] still works. On the other hand, it has been 
shown in [01] that the analogous result does not hold for universally topological 
categories, if one looks at pullback-preserving concrete functors. All finite limits 
need to be taken into account, as well as embeddings. Our interest here is to 
generalize Theorem 0.00 in such a way, that for X = 1 it covers the poset case, i.e., 
we want to eliminate the need for concrete binary products to exist in the objects 
of Xfp. This develops an idea explored to some extent in [13]. However, we cannot 
do without binary products in X. 

For a concrete functor (-4, U) —• (B> V) the inverse image functor ((B, V)s» Vs) ~% 
((A,U)sUs) maps an (B,V)-morphism (m,X) A ( n , F ) to (Fm,X) -^ (Fn,Y). 
A concrete right adjoint FR to Fs can be defined as follows: Whenever (m,X) is* 
a [/-sieve, let (m' ,K ) = (m,X)Fjt be the smallest V-sieve with codomain X such 
that m functors through m'F. (Similarly one can define a concrete right adjoint 
For of Fs)« 

We write Ud» for the concrete embedding of the Dedekind-MacNeille completion 
of (.4, U) into ((Ay U)s, Us), and U9d for the concrete left adjoint induced by TD. 

4.00 Definition. The Dedekind lift FD of a concrete functor (A, U) ---> (0 , V) is 
defined by the following composition 

((A,U)D,UD) ~^-> ( ( B , V ) D , V D ) 

(4-00) t/<.j jv;* 

((A,U)s,Us) ——• {{B,V)s,V8). 
FR 

Notice that the notion of Dedekind lift is not functorial, as the following simple 
example in Pos shows [13, Example 3.15]: 
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4.01 Example . Consider the embedding F of the discretely ordered set A = {x, y} 
into the poset (J9, C) given by 

x -> z <~ y, 

and define the Pos-morphism (H, C) —> 2op by x(? = 1 and zG = 0. Then A is a 
Dedekind cut in (A , =) , but not in (-B,C). Hence FQGD maps A to {0,1}, while 
(FG) D maps A to {1}. 

We now use Dedekind lifts to define a suitable extension of the quasi-category 
Xfp, which contains objects without binary products. The problem is to find the 
right morphisms. Essentially we want the Dedekind lifts to preserve binary prod­
ucts, but care has to be taken to insure that the morphisms defined in this way 
compose properly. 

4.02 Definition. 

(0) For any concrete category (A, U) over X define (A, U)B to be the smallest 
full subcategory of (.4, U)u which contains all binary products of principal 
17-ideals. We write UB for the restriction of Up to (.4, U)B, and Ub for the 
concrete embedding of (.4, U) into (A, U)B> 

(1) Let X\> be the (non-fuU) subcategory of cCAT/X, whose objects are fibre-
small concrete categories, and whose morphisms form (A, U) to (5 , V) are 
those concrete functors, whose Dedekind lift restricts tot a concrete functor 
from (( .4,U)B ,UB ) to {{B,V)B,VB). 

Clearly (.4, U)B is small-fibred if (*4, U) is. Moreover, (.4, U)B has the same final 
quasi-completions as (.4, U). It is important to notice that for two composable X\r 
morphisms F and G we have (FG)B = FBOB- Obviously, Xfp is a full subcategory 
ofXb. 

The framework outlined above will allow us to extend Theorem 0.00, if we can 
rephrase the notion of cartesian denseness without using powers. 

F 

4.03 Definition. A concrete functor (A, U) —* (-5, V) into a concrete quasi-
category is called cartesian dense, provided that an #~morphism BU —• CU lifts to 
a f?-morphism from B to C iff for any two «4-objects A and D and every (B, V)B~ 

morphism AFxC *-+ DF the composition (AUx f)-gV lifts to a (S, V)B~morphism 
from AFxB to DF. 

If (B} V) is an ordinary concrete category, this means principal V-sieves of the 
form (Av, AFV) and (Dv

y DFV) suffice to define A c , i.e., (x : X) € A c iff for all A-
objects A the product ((AF)V : AFV) x (x : X) is left-orthogonal to every principal 
V-ideal (DV,DFV),D € A-Ob. If the base is cartesian closed this translates into 
assertion that the powers [AFV, DFV] are initially dense in the CCCT-hull of 
(H, V). By default, (0, V) is cartesian dense in its CCCT-hull. 
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