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Bicontractive projections in sequence spaces 
and a few related kinds of maps 

M A R C O BARONTI , PIER LUIGI PAPINI 

Abstract. Norm-one projections onto subspaces of a Banach space play an important role 
in approximation theory. In some classical sequence spaces, subspaces for which such 
a projection exists have been characterized recently. Bicontractive projections are not 
common: here we characterize the subspaces of CQ and lp for which a projection of this 
type exists. Golomb defined central proximity maps: they are useful to construct a best 
approximation by the alternating method. Here we show that this class of maps often 
coincide with the class of bicontractive projections. 

0 
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1. Introduction. 
Let X be a Banach space over the real field R; we denote by Y a closed subspace 

of X. A map P : X —• Y is idempotent if P 2 = P ; a linear idempotent map 
P : X —• Y is called a projection onto Y. A projection P is said to be bicontractive 

ifiiPii = ii/-pn = i. 
In general, Banach spaces are not rich of contractive projections, as Kakutani 

theorem and its generalizations say (see e.g. [1], §12 ). In some sequence spaces a few 
characterizations are known (see [2] and [3] ). Of course bicontractive projections 
in these spaces are still less : in the present paper we try to produce results on this 
matter for some classes of subspaces in a few classical sequence spaces. 

The interest in the class of bicontractive projections sprung for us when we studied 
central proximity maps ( see [4] ): in fact there are strong connections between the 
latter and the former. 

We recall that an idempotent map P : X —• Y is called a central proximity map 
when the following condition holds: 

(1) ||x - Px - y\\ = \\x -Px + y\\ for all x in X and y in Y. 

These maps were introduced by M.Golomb three decades ago: for general results 
on them we send to [10] ( see also [4] for more references). 

A number of conditions are sufficient that a central proximity map be linear: 
for example (see [4] ) the condition that Y is hyperplane. Other conditions will 
be indicated in Section 3 below. In Section 4 we shall prove a few characteriza
tions concerning bicontractive projections in sequence spaces. Finally, relations 
concerning central proximity maps and bicontractive projections will be considered 
in Section 5. 

Partial support provided by G.N.A.F.A-C.N.R. and M.P.I, of Italy 
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2. General known results and definitions. 
The following results are known: 

Theorem 1. (see [4] ) . If P : X —> Y is a projection, then P satisfies (I) if and 
only i / | | 2 P - I | | = 1. 

Theorem 2. (see [5] ) . Let X = I P ( A , £,/-) , 1 < p < +oo,or X a pre-dual L\ -
space. Then a projection P is bicontractive if and only if 2P — I is an isometry. 

Note that the if part in Theorem 2 above trivially holds for any X; moreover, if 
P a projection then 2P - I is involutive (i.e. (2P - I)2 = I). 

To state some of our results, the following definitions are necessary. 
If x,y are in K, then we shall write x±y (x is ortogonal to y) when \\x+ty\\ > \\x\\ 

for all t in R. We shall also write A±B when a±b for all a in A and b in B. The 
following characterization is possible. Set: 

(2) ^ ^ - ^ J l f i i i d L z M . 

Then x±y if and only if - r ( . r , -y) < 0 < r(x, y). In particular if we set: 

(3) r ' (x, y) = to, ( l | l + t y | | - | | l - t y l l ) - « , , - ) - r (* , - y ) ) / 2 

then r'(a?,y) = 0 implies xXy (note that -r(x,-y) < r*(x,y) < r(x,y) for any 
pair x ,y) . The condition £±y can also be expressed in this way : there exists a 
norm-one functional J assuming the norm at x and such that J(y) = 0. Recall that 
for a projection P : X —> Y, ||P|| = 1 is equivalent to : 

(4) Px±x - Px for all a: in X. 

n 
If Y = *fl /jk"1(0) *s a subspace of X of finite codimension n ( / i , . . . , fn in K*), 

Jk-=i 
then a projection 

P : X —• Y has a specific form, namely: 

n 

(5) Px = x - ] T / i ( a O * i where /,-(*,•) = 6itj ((I - P)K = span[zu... ,zn]) . 
t_=i 

In this case P is bicontractive if and only if: 

(6) Y±span [ZJ, . . . , zn] and .span [z,-,..., zn] ±Y. 

We shall write, for a in R, sgno = -J* (eventually sgn 0 will mean 0). For a result 
related to existence of bicontractive projection, see Proposition 2 in [12]. 
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3. Central proximity maps and linearity. 

As proved in [4], if P : X —• Y is a central proximity map, then we have: 

(7) r ' ( s - P . z , y ) = 0 for all x in X, y in Y. 

Theorem 3 . Let P : X —• Y be a central proximity map. Then we have 

(8) r'(y, x - Px) = 0 for all x in X, y in Y. 

P R O O F : Recall (see [4] ) that any central proximity map satisfies: 

(9) P(ax + y) = aPx + y for x in K, y in Y and a in R. 

Therefore (by using (1)) we obtain: 

r'(y, x - Px) = lun '» + «<* - ^ ) H - »y - a(x - J * ) | = 
V!" ' o _ 0 + 2a 

.. ||ax + y - P(a.r + y) + y|| - \\ax + y- P(ax + y) - y|| 
= hm = u. 

cr~»o+ 2a 

• 
By using Theorem 3 we obtain: 

Theorem 4. Let X be such that r ' (x , y) is additive in its second argument; then 
every central proximity map in X is linear. 

P R O O F : Let P : X -H• Y be an idempotent map satisfying (1), thus, by Theorem 3, 
also (8). Take x,z in X and y in Y; by using the linearity of r'(.,.) in the second 
argument we obtain: T'(y, Px + Pz — P(x + z)) = r'(y, Px — x + Pz - 2 - (P(a? + 
2) - x - 2)) = 0. If we set y = Px + P2 - P(x + 2), by recalling that T'(X, x) = ||a:|| 
for any a; in X, we obtain Px + P2 = P(a: + 2). • 

Corollary 5. Let X be a smooth space or X = Li(K, E,/i) and P : X —> F a 
central proximity map. Then P is linear. 

PROOF : If X is smooth, then —r(x, — y) = r(x, y) = r'(x, y) for every pair x, y 
and r(a:, y) is linear in y. If X = Li then r' is linear in its second argument (see 
e.g. [11]), • 

For examples of central proximity maps which are not linear we send to [10]. 

4. Biconctract ive projections in sequence spaces. 
In this section we want to discuss characterizations of biconctractive projections 

in some classical sequence spaces. We shall denote by (CJ)I€/V or by (c*)<€/v the 
elements of the natural basis in X or X* respectively, X being one of these spaces 

((e.),=W)> = *.,,). 
Let X = C0(K) be the space of all continuous functions vanishing at infinity on a 

locally compact Hausdorf space K with values in R (endowed with the sup norm). 
Then bicontractive projections onto subspaces of Y have been characterized in [7] 
(Proposition 1.19 and Lemma 1.17). For the particular case of X = c0 we have: 
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T h e o r e m 6. The projection P : CQ -+ Y is bicontractive if and only if there exist 
a map a : R—* (—1,1) and an isomorphism h of R such that: 

(10) Pf = l/2(/ + afoh),f€ Co 

and 

(11) aoh = a , h2 = I. 

In particular, ifY = f~l (0) (with f in I1) is the range of a bicontractive projec
tion, then either f has only one non null component or f has at most two non null 
components fi, fj with \fi\ = | / , | . 

PROOF : The proof of the above theorem was based on Theorem 2. We shall give 
a direct proof of the last part by using some results from [6], 

Let P : X - Y = /-*(<)), ||P | | = | | / | | = 1. Let Px = x - f(x)z (f(z) = 1); we 
know (see [6] ) that |/»| > | for at least one index t. Also: if this is true for a single 
index t, then we must have ( see again [6] ) z = ( l / /»)e t . Now let ||I — P|| = 1, 
therefore: 

| |(I - P)(x)|| = | | / (*)* | | = \M\ < \\x\\ for all x € X 

If we set xk = £ * . , e.sgn/,- then we have (||*»|| = 1): | / ( s* ) | = ^ l/»l £ l/«l-
Letting k —> oo we obtain | | / | | < | / , | which implies / „ = 0 for any n ^ i. If / 
has two components /&,/* such that |//>| = \fk\ = 1/2, then we obtain / „ = 0 for 
n ^ h,fc. 

Conversely, if / has only one non null component, / , , then if we define z = ( l / / , ) e , 
it is easy to prove that Px = x — f(x)z is bicontractive. If / has only two non null 
components, /* and /*, such that | /^ | = |/*|, then if we define z = (sgn/*)e* + 
(sgn/jfc)e* it is easy to prove that the projection Px = x — f(x)z is bicontractive. • 

To prove our characterizations for the spaces lp, 1 < p < -f-oo, we need the 
following result. 

Theorem 7. (*ee [2], [3]f Let X = lp; 1 < p < +oo, p ̂  2, and letY C X be a 
hyperplane of finite codimension n. Then a norm one projection P : X —>Y exists 
if and only if Y can be expressed as the intersection of n Junctionals having at most 
two non null components. 

Now we can prove our characterizations. 

Theorem 8. Let X = lp, 1 < p < +oo, p ^ 2, and Y C X be a hyperplane of 
finite codimension n. Then Y is the range of a bicontractive projection if and only 
if there exist n Junctionals fx , . . . , / „ in lq (l/p + l/q = 1) and n different indices 
ti,..., tn such that: 

oi' = .n(/r1(o) 
' «) (/.)«/ - - y ( l<»\i<n) , . . . . w , v . 

iii) for any i , there exists at most one index a i (*i.• • • ><•») »"ch that(fi)Si + 
0; moreover if st is such, then K/0,,1 = 1 and (/,•)., = 0 for any j ± t. 
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PROOF : "If' part. Let / i , . . . , / „ be n functionals satisfying i), ii), in). Assume, for 
simplicity of notations: tj=j (j = 1 , . . . , n); moreover, let s\,..., sm (0 < rn < n) 
be m different indexes € {n -f 1, n -f- 2 , . . . } such that |(/.)5il = 6ij for 0 < i < m 
(for m = 0 no such index exists). 
Consider the following elements z\,..., zn: 

(12) Zi = -ti -f -sgn(/ i)S ie s . if 1 < i < m; Zi = e, if m < i < n 

It is routine to show that conditions (6) hold for Z\,..., zn as above : thus the pro
jection P defined by (5) is bicontractive, which proves the " i f part of the theorem. 

"Only i f part. Let Y be as indicated and let P : X -> F , ||P | | = ||I - P|| = 1. 
By Theorem 7 there exist n functionals f \ , . . . , fn satisfying i) and ii) and such that 
each of them has at most two non null components; for simplicity of notations, we 
shall assume ti = i ( i=l ,2 , . . . ,n), thus (/,);- = 6{j (1 < i , j < n). 

n 
Also let Px = x — £ fi(x)zti ' by our assumption condition (6) must be satisfied. 

t= i 
Now suppose that for some s $ (1 ,2 , . . . ,n) we have (fi)s *- 0 for more than one 
index i : again for simplicity of notations we shall assume 
(/•)• ^ 0 for i = 1,2,... ,rn (2 < m < n) and (eventually, if m < n) (fi)s = 0 for 
m < i f$ n. 

From fi(z\) = 6it\ (1 < i < n) we obtain: 

(13) / i (* i ) = ( z i ) i + ( / i ) , ( z i ) a = l and so (z\)s (/.). 

(14) / i ( * 0 = 0 and so (*•),- = ( / , ) , (* , ) . = ^ f f ^ ^ 

for 2 < j < m. 

Now set: 
m 

(15) x = ^ ( / i ) , e i - e , = ( ( / 1 ) „ . . . , ( / m ) - , 0 , . . . , - l , 0 , . . . ) 
;=-i 

Recall that for any point in X there exists exactly one norm-one functional at
taining its norm at such point. Since x € Y we have xLz\ and this implies: 

m 

as) x = ^K/i).r2(/iW^)i -(*.).=o 
i-=i 

If we substitute (13) and (14) into (16), we obtain: 

o=K/o.r-v/.M-.).+±\(fi).r
2(fi).

{-ft)'{l:{zi)l) - ^ i = 
í=i (/.). (/.). 

77r(Ei(/i).i',(2>).-E^)-i,,-1+(2.).)-
VI1 ' • i=-l i=2 
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Now we set: 

(17) 6= X 

i+Ei(/j).r 
j = i 

Then we obtain: 
m 

(is) (*!), = HI+53i(/i).r) = i - Wi)..' > o 
>=2 

and then, by using (14): 

(19) (*i)i = - - ( / i ) . | ( / i ) . r a ( / i ) . f o r 2 < j < m . 

Moreover by (13): 

(20) (-o. = *i(/i).r*(/»).-

Now we shall use the condition z\±x: this means that J(x) = 0 where J is the 
unique norm-one functional attaining its norm at z\. Thus we have (we intend 
eventually 0*"2 = 0): 

/(*) = Ei(*i)ira(*iW/i). - K*i).ra(*i). = o. 

By using (18) and (19) we obtain: 

m m 

[K-+EK/;)*nrVi^ 
i = 2 >-=2 

But (20) implies | (* i ) . r 2 (* i ) , = W-%h)*f~2v(h)*', if we substitute in the 
previous equation, then we divide by 6p~1(/i)« / O w e obtain: 

f 1 + E K/iWr1 - E i(/i).i('"2)'K/i).p - \(fiUip-2)p=o 
;-r2 j = 2 

and so: 

m 

(- + £ K/ i ) . l ' r 2 = l(/i).l ( ' '2)P ' which implies (p -4 2) : 
>=2 

(21) Ш.ľ, = l + £Ш.ľ'-
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By reasoning in a similar way, but starting from z% (instead of from z\) we obtain: 
m 

(22) l(/a).)r = l+ £ l(/;)'lP-
j = l , ; * 2 

and by subtraction: 

|(/i),|p - |(/a).r = K/2).I
P - l(/i)-lP and so: 

| ( / i )* | = \(h)»\ (we denote by a this quantity). 

In a similar way we obtain: 

l ( / i ) . | = --- = l(/m). | = a. 

By using (21) we have: 
ap s= 1 + (m — l)ap which is absurd if m > 2. This shows that if s,- > n is an index 
such that : (/,)», ^ 0, then the other n - 1 functionals among f \ , . . . , / „ have the 
Si — th component equal to zero. This implies : x' = (fi)tiei — e-,. is in Y. Now we 
reason as above but on 2,; we shall obtain from here: 

(23) l ( / . ) . . l , K ' - , ) = l , 

which proves the "Only if " part of the theorem since p / 2. • 

Remark 1. Theorem 8, for the case of hyperplanes, had already been proved in 

[»]• 
Now we shall prove a similar characterization for I1. 

Theorem 9. Let X = I1 and let Y be a subs-pact of X of finite codimension n. 
Then Y is the range of a bicontractive projection P : X -H• Y if and only if there exist 
n Junctionals f \ , . . . , fn in l°° satisfying the conditions i), ii), Hi) of Theorem 8. 

PROOF : We assume again, for simplicity of notations: tj = j (j = 1 , . . . n). 
"I f part. Let f{ = e* + (/0*.e£,., !(/.)*,-1 = 1 for t = l , . . . , m (1 < m < n;k; > 

n ) ; fi = c* for m <i <n. Choose now (in I1) n elements z\,..., zn according to 
(12), then define P according to (5). It is easy to see that the conditions (6) are 
satisfied, thus proving the "I f part of the Theorem. 

"Only if" part. Reason as in the proof of the "Only i f part of Theorem 8 (where 
we set p = 1), but some remarks are due, mainly since l1 is not smooth. Concerning 
the condition Zi±x the following remarks apply. 

From [3] we obtain (zi)a ^ 0 and (zi)k = 0 for k > n, k ^ s (if (fi)a ^ 0). Also, 
consider (if m < n ) fk with m + 1 < k < n; because of Theorem 7, we certainly 
can write: 

fk = 4 + (fk)hke*hh
 w i t n hk > n; hk # s and eventually (fk)hh = 0 

m 
Thus fk(zi) = 0 implies (*,)* = 0 and so: z, = £ (*i)icj + (*.)#«*• 

i=i 
Therefore the condition xlzi implies (16) since any norm-one functional attaining 

its norm at x takes the same value at zj. Again we should eventually intend t/\t\ = 0 
if t = 0. For the same reason the condition Zi±x implies (21) with p = 1. • 
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Remark 2. To prove Theorems 8 and 9 we could use Theorem 2: to obtain the 
"only i f part by using the condition ||2Px — x\\ = ||x|| for all x € X we should 
indicate all relations between the conditions /* ^ 0 ^ ^ zk 7̂  0. 

Remark 3 . Theorems 8 and 9 show that in lp(l < p < 00, p =/ 2), if the codi-
mension of Y is n and Y is the range of a bicontractive projection, then Y can be 
expressed as the intersection of n hyperplanes with the same property. The converse 
is not true: for example, if Y = f~1(0) 0 g~~l(0) where / = ej + ej and g = ej + ejj, 
then we cannot express Y in that way, and so it is not the range of a bicontractive 
projection: this can be proved following the lines of the proof of Theorem 8. 

5. Central proximity m a p s and bicontract ive pro jec t ions . 
Some of the results indicated in Section 3 and 4 can be summarized as follows. 

We shall say that X is B-L space if it is one of the spaces considered in Theorem 2. 

Theorem 10. Let P : X —* Y be an idempotent map. Consider the following 
properties: 

(a) ||2Px - ar|| = | |s | | for all x in X 
(b) P is a central proximity map 

Also, if P is linear, let: 
(c) ||P|| = | | / - P | | = 1 
(d) | | 2 P - / | | = 1 
(e) 2P — I is an isometry. 

Then we always have: (e)=->(d)==>(c); (d)=>(b)=>(a). If X is a B-L space, then 
(c)«=>(d)o(e). If X is smooth, or X = Li(K,E,/i), then (b)==>(e). In particular, if 
X = Lp(K, S,/i) (1 < p < +00), then all properties (b) through (e) are equivalent. 

PROOF : The implications (e) => (d) => (c) and (b) ==> (a) are trivial (note that 
2P = 2P - I + I and 2(I - P) = I - (2P - I) ). The implication (d) => (b) was 
proved in [10], Lemma 4.5. 
In a B-L space we have (see Theorem 2) (c) =.• (e), thus the equivalence between 
(c),(d) and (e). If X is smooth or X = Li(K, £,,u), then (b) implies P linear (see 
Corollary 5), thus (b) => (e) (so (b) <-» (d) & (e ) ) . The last sentence of the theorem 
is a consequence of the previous ones. • 

The existence of some relation between (e) and (b) had already been observed in 
[5], where it was indicated that a projection P satisfies (e) if and only if 

(b') \\y + z\\ = ||y - *|| for y in Y and z = (I - P)z. 

This means that (b) is satisfied when Pz = 0: but in fact the assumption (d) 
(which is weaker then (e) ) already impHes (b). 

Remark 4. For examples showing that (b) does not imply P linear e.g. in C [0,1], 
and (c) does not imply (a), we send to [4]. Probably (c) does not imply (d) also if 
X is assumed to be smooth. 

By using Theorem 10 and the results of [2] and [3] it is possible to characterize 
central proximity maps onto subspaces of finite dimension or codimension in lpi 

1 < p < +oo, p 7̂  2 . Also, by recalling some facts indicated e.g. in [13], p . 779 -
788, we have: 
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Theorem 11 . Let X = Lp( A, £,**), 1 < p < +oo,p ^ 2, and let Y C X a proper 

subspace of finite dimension or codimension in X. Then no central proximity map 
onto Y exists if the measure is a-finite and contains no atom. Also, if X = C[0 ,1] 
and Y is as above, then no central proximity map onto Y (when it exists) can be 
linear. 

Finally, we recall that a necessary condition for the existence a bicontractive 
projection onto a subspace Y was indicated in [8]. 
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