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On pushing out frames 

B. BANASCHEWSKI 

Dedicated to the memory of Zdeněk Frotík 

Abstract. This paper deals with the preservation of monomorphisms by pushouts in the 
category of frames. It shows that, for a frame L, pushout along every u: L —• M 
preserves monomorphisms iff the congruence frame of L is Boolean, and derives several 
further consequences. Among the lemmas needed, it is proved that, for regular L, the 
coequalizer of any ftg:L —• M is the map M —• | s , x ~ ~ > sevs, for s = V/(x)^g(y) 
( « - y = 0) 
Keywords: Frame, pushout, preservation of monomorphisms by pushouts, Boolean con­
gruence frame 
Classification: 54D30, 54H99 

Among the question discussed at one of the problem sessions during the Con­
ference on Locales and Topological Groups in Curasao in August 1989 was the 
following: 

For pushouts 

V 

L > N 

(*) J . _ 1-
M — — > P 

in the category of frames, what conditions will ensure that v is monic whenever v 
is monic? 

As it stands, this question permits various specific interpretations, depending on 
the nature of the conditions envisaged. Thus, one might have in mind the possibility 
of conditions involving both, u and v, as in the fairly obvious observation, based 
on Stone Duality for finite distributive lattices, that the desired conclusion holds 
whenever L, A.f, and N are finite. On the other hand, one may consider the case 
that focusses on L and ask: 

For which frames L does pushout along every homomorphism u: L —• M pre­
serve monomorphisms? 

This is the question which is settled in this note. 
We recall a number of basic notions. A frame is a complete lattice L satisfying 

the distribution law 

.V5 = Va~*(*Є 5) ( a € L , 5 C L), 



14 B.Banaschewski 

a frame homomorphism is a map between frames preserving all finitary meets and 
arbitrary joins, and Frm is the resulting category. The monomorphisms of Frm are 
exactly the one-one homomorphisms. 

A frame L is called regular if, for each a € L, 

a = Vx (x -< a) 

where x -< a means that x * z = 0 and a V z = e for some z 6 L, 0 being the zero 
( = bottom) and e the unit (= top) of L. 

Each element a of a frame L has a pseudocomplement a* = Vx (x ~ a = 0), and 
L*** = {x € L | x = x**} is a frame homomorphism. Also, for any frame L, the 
frame congruences on L form a frame CL, the congruence frame of L, and the map 

a — y a = {(x, y) | x V a = y V a} 

is an embedding L —• €L. Here, each y 0 is complemented in €L with complement 

A 0 = {(x,y) | x - a = y - a } , 

and €L is generated, as a frame, by the Vo an<i &b (a>& € -£); -t follows, in 
particular, that L —• €L is an epimorphic embedding. The correspondence 
L ~ ~ > €L is functorial such that, for any h: L —• M, €h: €L —• €M takes a 
congruence on L to the congruence generated by its image by h x h. 

For further results concerning frames see Johnstone [3]. 
We begin with some lemmas, the first of which presents an explicit description 

of certain coequalizers which may be of independent interest. In the following, for 
any elements of a frame, fa = {x | x > s}. 

Lemma 1. For a regular frame Lf the coequalizer of any frame homomorphisms 
f,g: L —• M is M —> fa, x > x V s, where s = Vf(x)*g(y) (x,y € L, 
x ~ y = o;. 
PROOF : Consider any h: M —• N such that hf = hg. Then, 

h(s) = Vhf(x) ~ hg(y)(x ~ y = 0) = Vh/(x) ~ hf(y)(x ~ y = 0) = 0, 

hence h(a) = h(aVs) for each a € M, and therefore h factors through fa. It remains 
to show that f(a) V s -=- a(a) V 5 for each a€ L. Take any x -< a in L with x ~ z = 0 
and a V z = e, Then / ( x ) ~ # ( z ) < s, so that 

9(a) V .s > g(a) V ( /(x) ~ g(z)) = (<?(a) V / (x)) ~(g(a) V y(z)) = <?(a) V f(x) > f(x). 

Taking join over all x ~< a and regularity then implies that f(a) < g(a) V $, and by 
symmetry one obtains f(a) V s = #(a) V 5. • 

Next, we have a fairly obvious observation on the preservation of arbitrary meets, 
based on the famiHar fact that any frame homomorphism preserves the complements 
of complemented elements, by the uniqueness of complements in bounded distribu­
tive lattices, and that complete Boolean algebras satisfy the general deMorgan law 
~ AS = V ~ t(t € S) where ~ stands for complementation. 
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Lemma 2. For Boolean L, any frame homomorphism hi L —• M preserves arbi­
trary meets. 

Finally, our main step towards the desired result is 

Lemma 3 . For any regular frame L, if 

L —?—> N 

i - . i« 
M — — • P 

is a pushout in Frm where u and v preserve arbitrary meets then v is dense whenever 
v is monic. 

PROOF : It has to be shown, for monic v, that v only maps zero to zero. We use 
the standard construction of pushouts (*) as the coequalizer of a suitable pair of 
maps from L into the coproduct M © N of M and N, employing the description of 
the latter given in Banaschewski [1]. For this, recall that M © N can be obtained 
by first taking the frame S of all Scott closed subsets of the product M x N, and 
then the closure system £ in S determined by the following condition on X € S: 
(J) For any (a,6) € M x N and any finite Z C M, if (a~i ,6 ) € X for all t € Z 
hen (a ~ Vz, b) € K, and analogously for any finite Z C N. 

Here, a Scott closed subset X C M x N is a downset (if (a, 6) < (5,*) and 
(3, t) G X then (a, b) £ X) which is closed under updirected joins, where updirected 
sets are by definition non-void. 

The closure operator A or & associated with £ is then a nucleus, so that £ is a 
frame; it is the coproduct of M and N with coproduct maps 

k: M —• M x N x ~~> (a, e) ~ ~ > l(x, e) ~ ~ > AJ.(x, e) 
A 

6 • £ 
£:N —>MxN y > (e, y) > | (e , y) > A|(e, y) 

where | (a , b) = {(5, t) | s < a, t < b}. 
Note that the condition (J) can be reduced to the two particular cases Z = 0 and 

Z = {s , t} , which is the way we shall deal with it. 
Now, the pushout (*) is obtained as the coequalizer of 

JH 

L=XZ 

tv 

and since L is regular Lemma 1 says this is the map 

£ —• TS, X — > X V S 

for 
5= \ / ku(a)~£v(b). 

o,6€L, o^»=0 
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To describe S more explicitly, we first observe that, for any x 6 M and y 6 N, 

fc(x) = i(«, e) U i(e, 0) and i(y) = i(e, y) U i(0, e) 

which results by direct checking: the indicated sets are Scott closed, as finite unions 
of such sets, (J) for Z = 0 holds in virtue of the appearance of (c, 0) and (0, c), 
respectively, and (J) for Z = {s,t} is verified by going through all possible cases 
for the occurrence of the elements (a <-> s, b) and (a ~> t, 6), respectively (a, 6~ 3) and 
(«,«--*)• 

Next, since binary meet in £ is just intersection, 

*(-)~4y) = i(*.lOUi(e,0)Ui(0,e) 

and therefore 

S= V ««(«).-(-))Ui(e,0)Ui(0,e). 
a,66L,a —6=0 

Finally, we wish to establish that S is actually just the union W of the indicated 
sets, that is, W is Scott closed and satisfies (J). Here, it suffices to consider only 
the sets i(u(a), v(b)) for a ~ b = 0 in L, the apparently missing J,(e, 0) and J,(0, e) 
being covered by the cases a = c, 6 = 0, and a = 0, 6 = c. 

The condition (J) only has to be checked for the case Z = {s, t}. M Z CM and 
(c -. 5, d), (c ~ t, d) € W for some (c, d)6MxjV, then there are a, 6, a', 6' € L such 
that 

a~6 = 0 = a'~6', 

(c - a, d) < (u(a\ v(b)) and (c - *, d) < (u(a'), t>(6')), 

and it follows that 
(c ~(s V i), rf) < (u(a V a'), u(6 - 6')) 

where (a V a')-(6-6') = 0, and hence (c~(s V t),d) 6 W. The case Z C N being 
entirely analogous, this established (J). 

For Scott closedness, we first note that the hypothesis on u and t; implies the 
following: For each x € M and y € N, if 

*- A «. *- A 6 

a€L,*<*(a) *€L, »<»(») 

then a? < u(a7), y < v(y) and the maps x ~~> a?, y ~ ~ > y are order preserving. 
Of course, these maps are precisely the left adjoints of the maps u and v. Their 
usefulness here lies in the fact that, for any (ar, y) 6 M x N, (a:, y) € W iff aT ~ y == 0. 

Now, consider any updirected T CW. Then, for 

a = V{a? I (a,,y) 6 T} and 6 = V{y | (s,y) € T} 
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we have 
a~b = V{xt ~y 2 | (xi ,yi) , (*2,y2) € T } = 0 

since T is updirected, and hence 

VT = ( V *, V y)<( V «(*)> V »(»)) = («(«).«(*)) 
(x,f)€T (x, f)€T (x,|f)€T (*,!f)€T 

shows VT € W. In all, this establishes that 5 = W. 
Finally, for any x € M, fc(x) V 5 = 5 iff Jfe(x) C 5 iff 4(ar,e) < (u(a), v(6)) for 

some a, 6 G L such that a ~ 6 = 0. Here, e = v(b) implies 6 = e for monic u, and 
then a = 0 so that x = 0. This proves v is dense, as claimed. • 

Now we have 

Proposition. Pushout along every u: L — • M preserves monomorphisms iff the 
congruence frame €L of L is Boolean. 

PROOF : (==>) For any L, the diagram 

L - — (ЄІ).. 

1- 1" 
<£I —-— (ЄŁ)„ 

where u is the usual embedding and s = (.)** is a pushout since u is epic. Moreover, 
su is monic since 

su(x) = u(x)** = Vj* = V*, 

but s is not monic unless €L is Boolean. 
(•€=) Assuming €L is Boolean, consider the following enlargement of the pushout 

diagram (*). 
€v 

€L >€N 

€u\ 

€M 

(Ш)џ 

N 

M --> P 

where the outer square is also a pushout, the maps L —• €Ly... are the standard 
embeddings, €M — • (CM)** is the usual map (•)**, and w is the unique map* 
resulting from the pushout property of the inner square and the various commuting 
parts of the diagram. 
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Now, for monic r, <£v is dense and hence monic because CL is Boolean. Moreover, 
the maps of the outer pushout originating at £L preserve arbitrary meets by Lemma 
2, and since any Boolean frame is regular Lemma 3 applies. This makes s dense and 
hence monic because ( O f )** is Boolean. Finally, since the map M —• (<£M)** is 
also monic, as already noted in the first part of this proof, it follows that wv and 
therefore v is monic. • 

CoroUary 1. Pushout along u: L —• M preserves monomorphisms whenever L 
is Boolean or finite. 

* PROOF : For J oolean L, the usual L —> €L is an isomorphism so that <£L is also 
Boolean. If T H finite, <£L is finite, and since any €L is generated, as a frame, by 
the compk ^uted elements Va and A 0 , a £ X, this makes every element of €L 
complemented. • 

In analogy with a familiar model theoretic notion, a frame L is said to háve 
the amalgamation propertv if, in any pushout (*), u and t; are monic whenever 
u and v are. Since the (=>) proof of the Proposition involves the monomorphism 
u: L —• €L, we then also háve 

CoroUary 2. A frame L has the amalgamatior property iff €L is Boclean. 

Finally, we háve the following partial strengtheRir*': of the Proposition, obtained 
as a consequence of the first part of the proof: 

CoroUary 3- For any frame L, €L is Boolean whenever pushout along any quotient 
map L —• L/Q preserves monomorphisms • 

PROOF : We obseive first that, for any congruence 6 on L and any monomorphism 
v: L —• JV, the pushout of v along the quotient map u: L —• L/B is given by 

v 
L > N 

i- . i= 
L/B —V—> N/€v(S) 

where ti is the indicated quotient map and t; the unique homomorphism such that 
vu = #v, resulting from the fact that the 0 = Ker(u) C Ker(ui?). Hence, if v is 
monic then 

u~v(x) = uv(y) iff u(x) = u(y) 

for all x, y G L, that is, 0 = (v x v)""1[€v(x)]. This makes the homomorphism 
<£u: 1LL —• £N one-one. It follows that, for any pushout 

L — ^ JV 

1- _ !• 
€L —í—^ P 
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where u is now the usual embedding L —• <£L, v is monic in view of the commuting 
square 

L ——• N 

i 
€L • €N 

Applying this to the pushout already considered in the first part of the proof of the 
Proposition we conclude as before that €L is Boolean. • 

R e m a r k 1. The frames that occur in the Proposition have been considered else­
where. Thus, Beuzer and Macnab [2] characterize them as those frames L for which 
each | a , a G L, has a smallest dense element. Also, Simmons [6] shows, for the 
frame CDK of open sets of a To space K, that C(S)K) is Boolean iff" X is scattered. 

Remark 2. There is an alternative proof of the Proposition, based on an auxiliary 
result different from Lemma 3. Joyal and Tierney [4] show that pushout along any 
u: L —• M takes open monomorphisms to open monomorphisms, where in general 
a frame homomorphism is called open if it preserves ajl meets and the relative 
pseudocomplement 

a —• b = Vx(a ~ x < b) 

(see also Pitts [5]). This can be applied in the (<$=) part of the proof of the Proposi­
tion, using the natural extension of Lemma 2 that any frame homomorphism with 
Boolean domain is open. The part of the latter concerning a —• b results from the 

observation that a —• 6 = (~ a) V 6 in any frame if the element a has a complement 
~ a. 

It might be noted that the Proposition says more than what is immediately 
implied by the Joyal-Tierney result since there obviously exist non-open monomor­
phisms v: L —• N for which €L is Boolean, as is the case, for instance, for any 
finite non-Boolean L. 

R e m a r k 3 . There are certain subcategories of K of Frm in which the monomor­
phisms are still exactly the one-one homomorphisms but pushout along each 
u i i, —• jif preserves the monomorphisms in K, even though these pushouts are 
pushouts in Frm and there are L € K for which €L is not Boolean. One of these is 
the category CohFrm of coherent frames and coherent homomorphisms (Johnstone 
[3]). CohFrm is equivalent to the category D of (bounded) distributive lattices, and 
the result for it foUows from the corresponding one for D. The latter can be ob­
tained by using that D has enough injectives, which comes from the corresponding 
fact for Boolean algebras where it amounts to the familiar Sikorski Theorem that 
a Boolean algebra is injective iff it is complete. Alternatively, Stone Duality for D 
wiU also give the desired result. However, there also is a choice-free, and indeed 
constructive, argument which uses a reduction to finite lattices followed by a direct 
proof. Another subcategory of Frm of the same kind is the full subcategory of Frm 
given by the compact regular frames. In this case, the result in question foUows 
from the duality between these frames and compact HausdorfF spaces, which in turn 
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follows from the Boolean Ultrafilter Theorem. We do not know whether there is a 
constructive proof or, at least, a choice-free one. 

Remark 4. By the result of Joyal and Tierney [4] quoted in Remark 1, pushout 
along every u : L —• M preserves monomorphisms whenever L has the property 
that any monomorphism v: L —• N is open. This observation, however, is also 
an easy consequence of the Proposition, specifically of Corollary 1, since L has 
this property exactly if it is Boolean. Indeed, for any L, if the familiar embedding 
L —• €L is open then, for each a 6 L, 

v«*=(v«r = A« 
so that 

V«*Va = V«* V V« = A 0 V Va = Ve, 

therefore a* V a = e, and thus a is complemented. The converse had already been 
noted. 

Remark 5. The question settled by the Proposition has two variants focussing on 
u and v respectively, namely: 

For which u: L —• M does pushout along u preserve monomorphisms ? 
For which monomorphisms v: L —• N does pushout along arbitrary u: L —• M 

produce monomorphisms? 
Concerning the first, one might note that any L rather trivially appears as the 

domain of some u asked for by that question: take M = L and u = idi or M = the 
terminal (=one-element) frame. Rirther, an argument based on Lemma showi that 
all u: L —• 2 with regular L have the property involved. This, in turn, leads to 
the result that, for regular L, pushout along u: L —• M preserves monomorpL • ms 
whenever M is spatial. An immediate corollary of this, obtained from the f pecial 
pushout used in the first part of the proof of the Proposition, in that, for regular 
L, €L is Boolean whenever it is spatial. This could also be derived, in a very 
different manner, by means of the criterion of Beuzer and Macnab [2] quoted in 
Remark 1, or from the results of Simmons [6]. Concerning pushout along arbitrary 
M : £, —• 2, we note that the frame of open sets of any infinite space X with the 
cofinite topology provides an example of such a u pushout along which does not 
always preserve monomorphisms: u takes each non-void open set to 1, and v is the 
identical embedding into the power set of X. 

As to the second question, the monomorphisms involved include, by what has 
been proved and said above, the v with Boolean €L and the open v. In addition 
there are, rather more obviously, the left invertible v. Finally, there is the equally 
obvious point that both, the u in the first and the v in the second question, are 
closed under composition. Complete answers, in either case, seem to be rather more 
difficult than what has been dealt with here. 
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natural example concerning pushouts of frames than he had presented before but 
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