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On the group of isometries of the Urysohn universal 
metric space 

V . V . USPENSKIJ 

Dedicated to the memory of Zdeněk Frolík 

Abstract We show that the group mentioned in the title, equipped with the topology of 
pointwise convergence, is a universal topological group with a countable base. 
Keywords: topological group, Urysohn space 
Classification: 22A05, 54E40 

Does there exist a universal topological group with a countable base, i.e. such a 
group G that every topological group with a countable base is isomorphic (topolog-
ically or algebraically) to a subgroup of G ? A positive answer to this question of 
S. Ulam was given in [1]: the group Aut Q of all autohomeomorphisms of the Hilbert 
cube, equipped with the compact-open topology, is universal. In the present pa­
per we apply Katetov's construction [2] of Urysohn universal metric spaces to give 
another example of a universal topological group with a countable base. 

Let us say that a separable metric space M is Urysohn iff for any finite metric 
space X, any subspace Y C X and any isometric embedding / : Y —• M there 
exists an isometric embedding / : X —• M which extends / . There exists a unique 
(up to an isometry) complete Urysohn space [2], [3], and there exist non-complete 
Urysohn spaces [2]. For a metric space M, let IsM be the topological group of 
isometries of M onto itself, equipped with the topology of pointwise convergence 
(which coincides with the compact-open topology on Is M). If M is separable, the 
group Is M has a countable base. 

Theorem. Let U be the complete Urysohn separable metric space. Then Is U is a 
universal topological group with a countable base, i.e. every (Hausdorff) topological 
group with a countable base is isomorphic to a subgroup of Is U. 

The proof is based on Katetov's paper [2]. Recall some definitions from [2]. 
For a metric space (X,d) let E(X) be the set of all functions / : X —• R such 
that \f(p) - f(q)\ < d(p,q) < f(p) + f(q) whenever p, q € X. For / , g € E(X) 
put dE(fi9) = sup{|/(p) - g(p)\: p <~ X}. Then (E(X\dE) is a metric space. 
If Y Q X and / € -57(F), define / * € E(X) as follows: for p € X, let f*(p) = 
m${d(p,q) + f(q): q £ Y}. The mapping / i—• / • is an isometric embedding of 
E(Y) in E(X), so we can identify E(Y) with a subspace of E(X). Let E(X,UJ) = 
U{ -^00 : Y C X,Y is finite} C E(X). There is a natural isometric embedding 
p i—• fp of X in .E?(K,u>), where fP(q) =- d(p> q) for p, q € K, so X can be identified 
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with a subspaee of E(X,u>). Put X0 -= K, Xn+i = E(Xn,u>). We regard each Xn 

as a subspaee of Kn+i> so we get a chain Xo C X\ C . . . of metric spaces. There is 
a natural metric on X„ = \JXn which extends the metric on Xn for every n. 

Every isometry <p € I sK extends uniquely to an isometry E(ip) 6 hE(X) [2, 
Fact 1.6], Let y>* € hE(X,u>) be the restriction of E(tp) to E(X,u>). The mapping 
V? i»—-• l£(<p) from Is.X" to hE(X) need not be continuous; however, it follows from 
[2, Fact 1.7] that the mapping <p •—• (p* from I s K to Is i£(K,u;) is an isomorphic 
embedding of topological groups. For <p = <po € I sK let <,i>n+i = (y?n)* € I s K n + i . 
There is a unique isometry <pu of Xu which extends tpn for every n. 

Lemma 1. The topological group hX is isomorphic to a subgroup ofhXu,. 

PROOF : The mapping ip «—• <pu, from Is X to Is Xu is an isomorphic embedding 
of topological groups. • 

If X is separable, then Xw is Urysohn [2]. The completion of Xu, is also Urysohn 
[3], [2, lemma 3.3] and hence isometric to U. This proves 

Lemma 2. If X is separable, the topological group hXw is isomorphic to a subgroup 
ofhU. 

Lemma 3 . Every topological group with a countable base is isomorphic to a sub­
group ofhX for some separable metric space X. 

Actually every topological group is isomorphic to a subgroup of IsX for some 
metric space X. For metrizable groups this is obvious: if G is a metrizable group, 
there exists a left-invariant metric d on G compatible with its topology. For any 
g € G the left shift x i—• gx is an isometry of (G,d), and thus we obtain an 
isomorphic embedding of G in Is(G, d). This proves lemma 3. • 

The theorem follows immediately from lemmas 1, 2, 3. 

Question 1. Are the topological groups hU and AutQ isomorphic? 

Question 2. Let m be an uncountable cardinal. Does there exist a universal topo­
logical group of weight m? Is Aut Im such a group? 
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