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Invaгiance pгinciples in L2[0,1] 

PAULO EDUARDO OЫVEIRA1 

Abstract. We study invariance principles in the space £2[0,1]. For this purpose we intro­
duce an isometry with an auto-reproducing Hilbert space which enables us to establish 
conditions for weak relative compactness. This together with some mixing conditions al­
lows us to establish weak invariance principles. 
Keywords: relative compacity, a-mixing, invariance principle 
Classification: 60F17 

1. Introduction. There has been some interest on studying convergence in distri­
bution on -L2[0,1], see, for example Mason [8], where further references are given. 
In this paper we are concerned with the study of invariance principles on L2[0,1]. 
That is, instead of studying convergence of the Donsker function on 23[0,1] with the 
Skhorokhod topology as usual (see, for example Herrndorf [4], [5], Peligrad [11]) we 
are interested on weaker versions of those results. The main problem when proving 
this kind of results is the proof of the relative compactness of the sequence of £2[0,1] 
valued random variables. In order to solve these difficulties we use the method that 
will be described in section 2. This method is based on the ideas of Berlinet [2], ch. 
2, where Berlinet is interested on the empirical process for independent and identi­
cally distributed random variables. However the method used seems not suitable to 
the study of the empirical process when we assume only a mixing condition. The 
study of the relative compactness will be carried on section 3, where it is proved a 
general condition for weak relative compactness (theorem 3.1), from which we easily 
derive other conditions already used by other authors when studying similar prob­
lems. In section 4, using those characterizations of relative compactness together 
with some other conditions we derive a general invariance principle in -L2[0,1] (the­
orem 4.2), from which follow some corollaries concerning particular cases and an 
interesting result about stochastic integrals (corollary 4.5). Finally, in section 5, 
we prove some invariance principles with easier verifiable conditions than the ones 
used on the theorems of section 4. 

2. Preliminaries. Consider the kernel R(s, t) = 1 — max(j, t). This kernel de­
fines an auto-reproducing Hilbert space HR (see, for example Aronszajan [1]). 

1 

The functions / which are in the space HR are of the form f(u) = fg(t)dt, for 
* 
1 

some function g € I2[0,1]. If / ' , / " € HR are defined by f'(u) = fgf(t)dt and 

1 This work was partially supported by a scholarship of INIC - Instituto Nacional de Investigaqao 
Cientifica 
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1 
f"(u) = f g"(t)dt, respectively, then the auto-reproducing inner product is given by 

u 
1 

(/ '»/")/* = J 9'(t)9"(t)dt' This auto-reproducing Hilbert space HR is isometrically 
o 

isomorph to the space L2[0,1] by the isomorphism 

9:L2[0,l]-*HR 

X 

Jg(t)dt. 

So, one can equivalently study convergence problems and relative compactness 
characterizations of probability distributions on L2[0,1] or on HR, which one ap­
pears to be the most convenient. 

Now take M to be the space of bounded signed measures on [0,1] endowed with 
the Borel <r-algebra. According to Suquet [13], the space of measures M may be 

l l 
embedded in the space HR by the function (p(fi)(s) = f R(s,t)dfi = f f*[0, u]du. 

o s 
l l 

One easily checks that (/,V?(*"))K = f g(u)fi[0,u]du = f g(u)fi(du), where f(u) = 
o o 

l 
f g(t)dt, using the isometry between L2[0,1] and HR, which generalizes the formula 
ti 

of integration by parts. 
Let {£n} be a sequence of real random variables, and a > 0 a real number. For 

n 
each n € N define the random element fin = —K« £ Zn$n • This random element is, 

for a suitably chosen a- algebra, a random variable taking values in M. Therefore, 
taking account of the embedding <p and of the isomorphism i/>, we may interpret 
this random variable as a random variable taking values in HR or in L2[0,1], as is 
more convenient. As a random variable taking values in the space L2[0,1], fin is 
interpreted as x/)""1 (p(fin)(u) = -~fin[0,u], and fin[0,u] = -^7^S[nu]. That is, fin as 
a random variable in L2[0,1] is the function appearing in the invariance principle 
(see, for example, Billingsley [3]). For this reason we shall call the random measure 
£-n the Donsker random measure. 

3 . Relative compactness of {/un[0,u]} in L2[0,1]. Define the functions gi(u) = 
cos(t -f |)u7r, and the real numbers A* = ((i -h f )**)~2, i € N. Then the func­
tions y/Tigi, i € N, are an orthonormal basis of L2[0,1] such that R(s,t) = 
oo 
£ ^i9i(s)9i(t)> &**& this series converge uniformly. Moreover, note that the se-
«=o 

oo 

ries Yl ^* converge. For simplicity one may choose an orthonormal basis of HR of 
t=0 

the form Gi = \/A7<7i. Using the isometry described in section 2 we can prove a 
general sufficient condition for weak relative compactness. 
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Theorem 3.1 . Suppose the random variables £n, n 6 N, satisfy the condition 

a) j2E£+2ibY,\Ete>\=ow 
k=2 i=2 j=l 

Then the set {^~7^S[nu]j n € N} is weakly relatively compact in X2[0,1]. 

PROOF : To prove this relative compactness we will interpret the Donsker random 
measure as a random variable taking values in the space HR and prove 

(2) sup / RN(F)Pn(dF) —• 0, as N — • oo, 
n€N J 

HR 

oo 

where Rjy(F) = ]T} (F* ^I)H> and Pn is the probability distribution of fin as a 
i=N 

random variable in HR. Then the relative compactness stated will follow (Partha-
sarathy [10]). Evaluating the integral in (2) we obtain 

/ RN(F)Pn(dF) = / f > , Gi)\Pn(dF) = E (f>(/x), Gi)2
R) =-

L i!R
 i=N ^=N I 

(Ě (/G,„w->)!) - ± $ ( t * (*) - (i) -») -
(3) 

= E -̂í.~г-*;' 

where g\n = (5 f i(^),... ,^(1)) and T n is the covariance matrix of &,... ,£n . Put 

On = £!nrn</;n. Then, noting that ||<Sf;n||oo < *> we have |On - 0 n - i | < A n = 
max xfTnx, where Tn is obtained from Tn by replacing all entries by zero, except 

l |x | |oo<l 
n 

the last row and last column. Evidently On < Oi + ]£ A*. It easily verified that 
k=2 

A, = ^ i + 2E1|^i6l- Then 

i=i 

EA.-f:.Bfi+2i:£i.B&6i. 
k=2 k=2 t=-2 >=1 

Taking account of condition (1) it follows On = O(n), that is, there exists some 

constant L such that ^g\nTngin < -£> for all i, n € N. So, an upper bound to 
00 

(3) is jfc ]T A,, which converge to zero as N —• oo, thus proving the relative 
i=N 

compactness of the sequence ^7^S[nu] in £2[0,1]. • 
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Corol lary 3.2. Suppose the random variables (n, n G N, are stationary, and 
oo 
£ |l££o£*| < oo. Then the set {^T/n^lnu]? n € N} is weakly relatively compact 

fc=0 
tnL 2 [0 , l ] . 

PROOF : If the (n are stationary an upper bound for the left side of expression (1) 
is 

n —1 n—1 c© 

(n - l)Et2 + 2 £ ( n - k)\EUk\ < (" - l ) ^ o + 2n £ | K 6 6 l < 2n ] T |£fofr |, 
* = 1 * = 1 J t = l 

so condition (1) is verified. • 

Note that this condition is used by Billingsley [3] to derive weak relative com­
pactness of the sequence ~^S[nu] in JD[0,1], 

When proving invariance principles one often suppose the convergence ~ESn —• 
a2. In what regards the proof of relative compacity we shall need only the weaker 
condition 

(4) sup - ESl < oo. 
n € N " 

Corollary 3.3. Suppose the random variables £„, n € N, verify condition (4) and 
E&tj > 0? h 3 € N. Then the set {"^7^S[nu^,n € N} is weakly relatively compact 
in L2 [0,1). 

PROOF : In this case the left side of condition (1) is equal to ESl ~~ E& • So (1) 
is obviously verified. • 

Corollary 3.4. Suppose the £n, n € N, verify condition (4) and are non-correlated. 
Then the set {^~7^S[nu],n € N} is weakly relatively compact in L2[0,1]. 

n t - l 
PROOF : As the £n are non-correlated £ .C !•-%£> I = 0, so (1) follows immedi-

i=2 >=i 
ately from (4). • 

In general condition (4) seems not to be sufficient as it involves only the covari-
ances and it seems essential to have some control on the absolute values of the 
covariances in order to be able to deduce relative compactness. 

To finish this section we will present a sufficient condition for weak relative com­
pactness of a different kind. It depends on the eigenvalues of the covariance matrices 
Tn , as n increases. This condition seems not to be comparable with condition (1) 
as far as the author was able to find. 

Theorem 3.5. Let Tn be the covariance matrix of £i,*••,&*> and let Xn be the 
greatest eigenvalue ofTn. Moreover suppose inf ~ESn > 0 and condition (4). If 

n€N 
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there exist A > 0 such that supAn < A then the set {jv7»^[nt.j»n € N} is weakly 

relatively compact in L2[0,1]. 

PROOF : An upper bound of (3) is obtained replacing 9in^n9in by max xlTnx. 
H*IU<i 

We shall prove that under the assumptions of the theorem this quantity is compa­
rable with u T n u , where u* = ( 1 , . . . , 1). For each n € N, the size of the smallest 
semi-axe of the hyper-ellipsoid x^nX = CuT n u, where C is a fixed positive con­
stant, is given by 

J **í Cu*Гnu 

If the n-dimensional hyper-cube ||.r||oo < 1 is contained inside the hyper-ellipsoid 

xfTnx = Cu f r n u then it follows max i T „ x < C u f r n u = CESl, n e N. If we 
ll*lloo<-

can choose C independent of n then replacing in (3), condition (1) will follow from 
(4), thus obtaining the weak relative compacity searched. In order to include the 
hyper-cube we must choose C such that J < ^ inf ~.ES n . • 

Note that when proving invariance principles one often supjjose the convergence 
n-ES* —• a2 > 0, so trivially inf -ES2 > 0 and (4). Remark also that the 

condition supAn < A avoids complete chaos. In fact, if supAn = 4-00 this would 
mean that, when increasing dimension (that is, the number of random variables 
considered), it exists some direction (defined by the eigenvector associated with 
An) where the variance increases without bound. So, as long as the dimension is 
large enough, the distribution of the random variables will become more and more 
chaotic. Of course, if one expects to prove some relative compactness or invariance 
principles it is expected to find some sort of regularity. 

4. Some weak invariance principles. In order to prove weak convergence in 
distribution of a sequence of Hilbert space random variables one must establish weak 
relative compactness and then prove the convergence of the sequence of character­
istic functions. In our case we will not follow this procedure but, instead establish a 
stronger convergence result. This is due to the fact that the characteristic function 
of the Donsker random measure as a random variable in L2 [0,1] is not suitable to 
establish the desired result. To establish the convergence in distribution in L2[0,1] 

d 

Mn[0, u] = ^7^S[nu] —* W(u), where W is a version of the brownian motion, we will 
prove the convergence of the marginal distributions 

W0i4..MM0,«*])-i(llr(ui),...,HrN). 

for any choice t i i , . . . , u* € [0,1] and k € N. In what follows we always suppose 
verified the condition 

(5) -ESl — • < r 2 > 0 . 
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If we suppose that the real random variables £n, n € N, satisfy the central limit 
theorem, then from (5) one easily derive the convergence of the one dimensional 
marginal distributions 

(6) /i„[0, u] = ^ S [ „ « ] ^ W(u), u € [0,1]. 

In order to prove the convergence of the k-dimensional marginal distributions we 
will need to impose some mixing and integrability conditions. For that purpose 
define the mixing coefficients 

sup{|P(Afl B) - P(A)P(.B)|, A e <?(&, l<i<m) 

an(k) = ^ B € 0"(&>m + & < * < n)> * < "i < n -- k} k = 1 , . . . , n -~ 1 

0 k > n , 

and 
a(k) = sup an(k), k € N 

The sequence {£n} is called a-mixing if a(k) —• 0, as k —• oo. 

Lemma 4.1. Suppose the sequence of random variables {£n} satisfy the central 
limit theorem, condition (5), is a-mixing and verifies 

(7) sup{-JS(Sm+n - 5 m ) 2 , m ,n € N} < oo 
n 

Then, for every choice k € N and u 1 ? . . . , u* € [0,1] 

OMO.Uj],...,^n[u t]) t (W(ux),...,W(uk)). 

PROOF : We will proceed as in Herrndorf [5] to prove this convergence. By 
the classical Prokhorov characterization of weak relative compactness and the fact 
that one dimensional marginals are weakly relatively compact one easily derives 
that {0*n[0,tii],... ,/in[0,Ujfc]),n € N} is weakly relatively compact. So this se­
quence has a subsequence which is convergent in distribution to some probability 
distribution Q on R*. Let iru. be the projection associated with the component 
u,-, and choose {rn} some sequence of non-negative reals such that rn —• 0 and 
nrn —• -f oo. As the convergence (6) holds we deduce that every Q*u} is gaus-
sian with variance u*. FVom (7) one easily derive E(fin[0,Ui -f rn] — /in[0,Uj])2 —• 
0, taking account of the choice of the sequence {rn} . If follows, from this and 
the asymptotic independence of the increments, that the probability distribution 
Q(ff«i>*"tt2 — w«t»• • • > *"«* — ^Hfc-i)""1 *s the weak limit of some subsequence of 
{(^«[0,u1] ,^n[0,u2]-/ i«[0,u1+rn] , . . . ,/i«[0,ujb]-/i«[0,u;b-i*Frn])}. Now, from the 
a-mixing condition and nrn —• -f oo, we derive that the functions nUl, nU2 — itUl, 
. . . , frUh — tf%h^x are independent under Q, so Q is the distribution of (W(u 1 ) , . . . , 
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W(uk)). We will describe this proof for k — 2, the general case follows by a recursive 
application of this process. Let A\, A2 be Borel sets of [0,1], Then 

IQ0n,*2 ~ *iY\M x M) - Q*THAI)Q{*2 - *iYl{M)\ = 
= lim|P{/in[0,tii] € Ai, /in[0,ti2] ~ A-»[0,ti! + r n ] € A 2 } ~ 

- P{fin[0,ti,] £ i4i}P{/in[0,ti2] - /in[0,tii + r n ] € A2}\ < 

< a n ( [ n r n ] ) < a ( [ n r n ] ) - ^ 0 , 

remarking that {^n[0,ui] G Ai} € <r(&, 1 < i < [nu\]) and {/in[0>w2] - fin[0,ui -f 
rn] G A2} € <r(£t-, [nui + nrn] < i < [nu2]). • 

Now combining this lemma with some relative compactness condition we derive 
a weak invariance principle. 

T h e o r e m 4.2. Suppose the random variables £n, n € N, satisfy the central limit 

theorem, conditions (1), (5) and (7), and are a-mixing. Then ^fcSlnu] converge 

in distribution to W in L2[0,1]. 

PROOF : It follows directly from the lemma 4.1 and theorem 3.1. • 

Note that in this theorem we do not require the existence of moments of order 
higher that 2, as we require directly the central limit theorem, and impose no con­
dition on the mixing coefficients as, for example Herrndorf [5]. As corollaries of this 
theorem we state the corresponding weak invariance principles of some particular 
cases. 

Corollary 4.3. Suppose the random variables £n, n € N, satisfy the central limit 
theorem, conditions (5) and (7), are a-mixing, and non-correlated. Then ~^7^S[nu] 

converge in distribution to W in L2[0,1]. 

PROOF : Use lemma 4.1 and corollary 3.4. • 

Note that this corollary includes the independent and identically distributed case. 
Condition (7) is trivially verified in this case, so the invariance principle follows from 
condition (5) alone. 

Corollary 4.4. Suppose the random variables £n, n £ N, satisfy the central limit 
oo 

theorem, condition (5), are a-mixing, stationary and verify ]£ |--££oC*| < °°- Then 
*=o 

^4^5[nt l] converge in distribution to W in 2.2[0,1]. 

PROOF : Use lemma 4.1 and corollary 3.2. • 

I?rom theorem 4.2 we can also derive some convergence results concerning stochas­
tic integrals. 

Corollary 4.5. Suppose verified the conditions of theorem 4-2. Let f € It2[0,1] 

and define F(u) = tf/(u) = f f(t)dt. Then ^ V J^ml £nF ( i ) A f F(u)dWu. 
u v 0 

PROOF : As the conditions of theorem 4.2 are satisfied it follows the convergence 

^ZrS[nu] —* W in -L2[0,1]. So the corresponding characteristic functions converge. 
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That is, for f € L2 [0,1] 
EfU^—*ESfW^ 

where (.,.) stands for the L2[0,1] inner product. Using the isometry T/> between 
X2[0,1] and JET#, and the embedding <p of M in HR, we obtain 

l l 

(/,/•»> = (F,Jpn[0,t]dt)R = (FMun))R = JF(u)?n(du) 
u 0 

as seen before. Recalling the expression of the Donsker random measure, it follows 
l 

л *—-

On the other hand (f,W) = f F(u)W(u)du = f F(u)dWu, according to the defi-
o o 

nit ion of F and elementary properties of the stochastic integrals (see, for example, 
Hida [6]). Then the convergence of the characteristic functions proves the result 
stated. • 
5. Further weak invariance principles. Until now we have proved weak in-
variance principles assuming both a-mixing and the central limit theorem. The 
a-mixing condition may be used, together with some other suitably chosen condi­
tions, to derive the central limit theorem needed to use lemma 4.1. For this purpose 
introduce the following condition 

(8) sup{~ E\Sm+n ~ Sm\2+e, m, n € N} < oo. 

Using Holder's inequality one easily derives that (8) implies (7), so imposing (8) we 
need no extra condition to use lemma 4.1. 

Theorem 5.1. Suppose the random variables £n, n € N, satisfy conditions (1), (5), 
(8) and are a-mixing. Moreover suppose they satisfy at least one of the conditions 

(A) £ sup E£tU <oo, 
jb=0 | .-m|>Jt 

or 

(B) sup EfrU = 0 (i-ESl), £ sup EhU —+ 0 as qn —• +oo. 
f,m<n j—q-n \l—m\>j, l,m<n 

Then "^h^S[nu] converge in distribution to W in L2[0,1]. 

PROOF : Erom conditions (5), (8), the a-mixing and (A) or (B) we easily derive 
that conditions of corollary 2.1 of Withers [15] are satisfied. Therefore the random 
variables (n satisfy the central limit theorem. As remarked before, (8) implies (7), 
so the conditions of lemma 4.1 are satisfied. Finally (1) ensures the weak compacity, 
so the result follows. • 

In some interesting particular cases these conditions become much more sim­
plified. The case which is the most simplified is when the random variables are 
non-correlated. 
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Corollary 5.2. Suppose the random variables £n, n € N, satisfy conditions (5), 

(8), are a-mixing and non-correlated. Then ̂ 7^S[nu] —» W(u) in L2[0,1]. 

PROOF : As the fn, n € N, are non-correlated (5) is sufficient to the relative weak 
compacity of £̂ »-S[nttl in X2[0,1]. Further, condition (A) of theorem 5.1 becomes 
sup.EfJ < oo, and this follows from (8). So £n, n € N, satisfy the central limit 
theorem. Then using lemma 4.1 and corollary 3.4 the result follows. • 

Notice that until now we have imposed no conditions on the mixing coefficients, 
besides the a-mixing condition itself. In the stationary case we will need to impose 
some condition on mixing coefficients in order to derive a central limit theorem. 

Theorem 5.3. Suppose the £„, n € N, satisfy condition (8), are a-mixing, strictly 
stationary and the mixing coefficients satisfy 

oo 4 

y^a(k)*fr < oo 

for the same e of condition (8). Then "Zj%S[nu] ~* W(u) in -L2[0,1] with a == 

*=-
PROOF : According to the theorem 1.7 of Ibragimov [7] from the assumptions it 
follows that the series defining <r is convergent and the £n satisfy the central limit 
theorem. Then use lemma 4.1 and corollary 3.2 to prove the result stated. • 

It is possible to state a theorem supposing only weak stationarity using theorem 9 
of Philipp [12]. This requires another mixing condition (^-mixing) and condition on 
the fourth moments of the random variables. We could also use a theorem of Mori, 
Yoshihara [9], which gives a necessary and sufficient condition for the central limit 
theorem for strictly stationary case using uniform integrability, and an extension of 
this theorem to the non-stationary case, Volny [14], For sake of brevity we will not 
state these results here. 

Finally remark that, although not mentioned, every theorem involving condition 
(1) has an evident duplicate replacing this condition by the condition on the eigen­
values of the covariance matrices used in theorem 3.5. Also remark that every set 
of conditions used evidently imply the conclusion of corollary 4.5. 
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