
Commentationes Mathematicae Universitatis
Carolinae

Peter Kissel; Eberhard Schock
Lucid operators on Banach spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 3,
489--499

Persistent URL: http://dml.cz/dmlcz/106884

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic
provides access to digitized documents strictly for personal use. Each copy
of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/106884
http://project.dml.cz


Comment.Math.Univ.Carolinae 31,3(1990)489-499 489 

Lucid operators on Banach spaces 

P E T E R KISSEL, EBERHARD SCHOCK 

Abstract. We consider an ideal of operators which have a pointwise unconditional rep­
resentation, and we investigate the relationship between them and some other operator 
ideals. 

Keywords: Operator ideals, unconditional convergence 

Classification: Primary 47D30, Secondary 40A30 

In this note we will study a class of operators on Banach spaces, which is closely 
related to the notion of unconditional convergence. 

An operator T : X —> Y is said to be lucid (i.e. it is a linear operator with 
unconditionally converging image's decomposition), if there exist sequences (an) C 
X*,(yn) C y , such that for all x € X 

oo 

(*) Ts = £an(s)yn 
n = l 

and the series (*) converges unconditionally. 
It is not hard to see that these operators together with a canonically defined norm 

form a complete normed ideal (in the sense of Pietsch) which we denote by A. We 
will characterize the lucid operators by factorization properties through spaces with 
an unconditional basis. We also investigate the relationship between A and certain 
other operator ideals and we study some hull procedures of operator ideals applied 
to A. Furthermore we consider the behaviour of A in relation to Banach spaces with 
certain special properties (for example local unconditional structure in the sense of 
Gordon and Lewis). 

We use the usual terminology of Banach space theory. X* denotes the topological 
dual space of the Banach space X, T ' the dual operator of the operator T. 

1. Definition and simple properties. 
In the sequel let X, Y be (real or complex) Banach spaces. A linear operator 

T : X —* y is said to be lucid, if there exist sequences (an) C X*, (yn) C Y, such 
that for all x € X 

oo 

(1.1) Tx = ]Ta n0r)3 t n 

The authors would like to thank Prof. J.R. Retherford, Baton Rouge, for many stimulating 
discussions. 
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where the series (1.1) converges unconditionally. Let A(X,Y) denote the set of all 
lucid operators between X and Y and let for T € A(X, Y) 

oo 

(1.2) A(T) = inf sup sup || Y^enan(x)yn\\ 
e„=±l||x||<l ~ 

where the infinitum is taken over all representations of T of the form (1.1). We 
omit the proof of the following general fact. 

Theorem 1.1. (A, A) is a complete normed ideal. 

If X is a Banach space with an unconditional basis (xn) with coordinate func-
tionals (en) , then for any x € X the series 

x = y\/en(x)xn 

converges unconditionally, hence the identity operator Ix in X is lucid. This shows 
that every operator which factors through a space with an unconditional basis is 
lucid, moreover we have the following theorem. 

Theorem 1.2. An operator T : X —> Y is lucid, if and only if there exist a space 
U with an unconditional basis and operators P : U —* Y,Q : X —• U, such that 
T = PQ. Then 

A(T) = in f | |P | | . | |Q | | . X ( l / ) 

where the infimum is taken over all possible factorizations and x(U) *5 the uncon­
ditional basis constant 

PROOF : Let T be lucid with a lucid representation 

Tx = J2an(x)yn, 
let U be the Banach space of all sequences (fn) such that ^2^nyn converges uncon­
ditionally and let the norm on U be given by 

||(£n)|| = sup ||e»£„yn||y. 
e„=±l 

Then the unit vectors en form an unconditional basis in U with the unconditional 
basis constant x(U) == 1- Thus we have a factorization T = PQ, where Qx = 
(an(x)),P((n) = £ £ « y n and 

A(T) < ||P||A(Ic)||Q|| = ||P||x(*7)||<?||. 

The proof can be completed by standard arguments. • 
This shows that A is quite large. Especially we mention the operators between 

the Xoo-space C[0,1] and the jfi-space Li[0,1]. These operators factor through 
a Hilbert space and thus they are lucid, although neither C[0,1] nor L\ [0,1] possess 
an unconditional basis. 

If the identity operator Ix in a Banach space X is lucid, then in the factoriza­
tion Ix = PQ the operator Q is injective and the operator P is surjective. From 
QP(U) = Q(X) and QPQP = QP follows that QP is a continuous projection of 
U onto Q(X), hence X is isomorphic to a complemented subspace of a space with 
an unconditional basis. Since every space with an unconditional basis is a comple­
mented subspace of Pelczynski's universal space [6], we have shown: 
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Theorem 1.3. 

(a) Ix is lucid, iff X is isomorphic to a complemented subspace of Pelczynskiys 
universal space. 

(b) A linear operator T is lucid if and only if it factors through Pelczynski's 
universal space. 

Later we will characterize these operators which factor through a not necessarily 
complemented subspace or through a quotient space of a space with an uncondi­
tional basis. Obviously the problem, whether a Banach space with a lucid identity 
operator possesses an unconditional basis, is equivalent to Lindenstrauss's prob­
lem if any complemented subspace of a space with an unconditional basis has an 
unconditional basis. 

2. Comparison with other ideals. 
The main result of this section will be that the ideal of lucid operators is not 

comparable with the most of the common operator ideals. We start with a simple 
observation (we adapt the terminology of Persson—Pietsch [8]). 

Proposition 2.1. 

(a) Every p-nuclear operator (1 < p < oo) is lucid with X(T) < vp(T). 
(b) Every absolutely-p-summing operator (1 < p < 2) with a separable range is 

lucid with \(T) < TTP(T). 

(c) Every p-integral operator (1 < p < 2) with a separable range is lucid with 
X(T) < ip(T). 

PROOF : Since every p-nuclear operator factors through /->, statement (a) is clear. 
Since every absolutely-p-summing or p-integral operator (1 < p < 2) factors through 
L2({/°, /i), it remains to show by standard arguments that it factors through a sepa­
rable subspace of L2(£7°,,«), which possesses an unconditional Schauder basis. This 
proves (b) and (c). On the other hand, if (K, y.) is a non-separable compact measure 
space, then C(K) <-+ LP(K, ft) is p-integral but not lucid, since C(K) is dense in 
Lp(K, /i), but the range of a lucid operator is necessarily separable. • 

Remark. Proposition 2.1(b) is not true in case p > 2 : 0. Reinov has shown in 
[10] that for any p > 2 there are separable Banach spaces X, Y and an operator 
T : X —* Y such that T is absolutely-p-summing but not even the pointwise limit of 
a sequence of finite rank operators and so of course T cannot be lucid. (A. Pelczynski 
has pointed out that the construction of Kwapien [3] yields similar examples.) 

To study the connection between the approximable and lucid operators we begin 
with the following lemma. (An operator T is said to be approximable iff it is the 
norm-limit of a sequence of finite rank operators.) 

Lemma 2.2. Let X be a Banach space and (Xn) a sequence of finite dimensional 
spaces with the property: There exist sequences of operators Sn : X —> X„, Tn : 
Xn -> X such that SnTn = IXn and 7 = sup ||5„|| • ||Tn | | < 00. Then 

\(Ixn)<yHTnIxnSn). 
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P R O O F : Let 

(2.1) Tnsnx = J2a*(x)yk> xeX 

k 

be a lucid representation of TnSn. From 

v - ]£«*(rny)S«y* = Sn(TnSn)Tny, y€Xn 
k 

we obtain a lucid representation of I\n • Then 

A(JXn) = X(Sn(TnSn)Tn) < \\Sn\\ • ||Tn | | • A(Tn5n). 

• 

Theorem 2.3. Let X be a Banach space, (Xn),(Sn)>(Tn),(Ixn), 7 oe the same 
as in Lemma 2.2. If { A ( I x n ) , n € N } « unbounded, then in X there exists an 
approximate (hence compact) operator which fails top be lucid. 

PROOF : We assume that every approximable operator in X is lucid, then the space 
(A(X), X) of all approximable operators endowed with the norm A is a Banach space. 
By the Open Mapping Theorem the norms || || and A are equivalent on (A(X)> A), 
i.e. there exists an 17 > 1, such that for all T € A(X) 

\\T\\<X(T)<r,\\T\\. 

Since X(Ixn) is unbounded, so is A(T„S„). But this contradicts 

KTnS„) < «>||Tn|| • ||S„|| < 7 - •». 

Gordon and Lewis [2] introduced the following notion: A Banach space X is said 
to have a local unconditional structure (LUST) iff there exists a real ji > 0, such 
that for each finite dimensional subspace Y C X there exists a factorization 

JY 

YC »x 
\ 

u 
of the canonical inclusion Jy = QP through a space U with an unconditional 

basis, such that | |P | | | |Q| |x(^) < /*• The infimum, x*(.K), of all such ^ is called the 
LUST-constant oiX. 

It can be easily verified that 

Xu(X)<X(Ix)<x(X) 
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and, if dim X < oo 
Xn(X) < X(IX). 

If X does not have LUST, (i.e. Xu(K) = oo), then there exists a sequence of finite 
dimensional subspaces Xn with X(Ixn) /* oo. To find concrete examples of such 
spaces X we make use of the ideas of Gordon and Lewis [2] concerning sufficiently 
euclidean spaces and tensor products of Banach spaces. A Banach space X is said 
to be sufficiently euclidean, [2], iff there exists a real ft > 0, sequences of operators 
Sn : X -> /J,Tn : /J -+ K, such that SnTn = /,» and | |5n | | • ||Tn|| < 0. 

Examples of sufficiently euclidean spaces are the Cp- spaces (1 < p < oo). 
Now we are able to show the existence of non-lucid approximable operators. 

Corollary 2.4. Let K, Y be sufficiently euclidean Banach spaces. Then there exists 
an approximable operator T on X®aY,a G {£, fl"}, which fails to be lucid. 

PROOF : Let S^T*, resp. S%\T% be operators with S* : X -~> l^T* : 
JJ - X,SZ : Y -+ .J,T,T : JJ - F , such that S * T * = S^T* = f,» and 
V7 = suPn(||S*|| • ||T*||, ||5r || • 113*11) < oo. 

Let 

An = (Si ® 5*) : K0oF - £&«/? 

B n = ( T * ® Tn
y): Ij0aIJ -> K®0F 

be the canonical tensor products, then An, B n = /{-.<§> jn and we have ||An_Bn|| < 7. 
Gordon and Lewis have shown that for n € N 

x-(»J® JJ) > - ^ 
hence by Theorem 2.3 there exist approximable non-lucid operators on X®aY. • 

Now it is easy to show that the ideal A is not comparable with most of the 
common ideals. 

Theorem 2.5. The ideals 
A of approximable 
K of compact 
V of completely continuous 
W of weakly compact 
U of unconditionally converging 

operators are not comparable with A, t. c. A is not contained in one of them, and 
none of them is contained in A. 

PROOF : FVom 
V 

A • £ U 

W 
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follows that we have to give an example of an operator T € A which is not in 
A (done in Corollary 2.4) and an operator T in A which is not unconditionally 
converging (for instance is the identity on CQ). The latter is lucid, but not uncon­
ditionally converging, since in Co there exist cr-summable sequences which are not 
norm-summable. • 

3 . Hulls of the ideal of lucid ope ra to r s . 
In Theorem 1.3 we have shown that every lucid operator factors through a com­

plemented subspace of Pelczynski's universal space (7, hence through U itself. Here 
we will focus our interest on those operators which factor through an arbitrary 
subspace of U. 

In order to characterize these operators we need the notion of injective or surjec-
tive hull of an operator ideal (see e.g. Pietsch [8]): 

The injective hull Amj(X, Y) of the ideal A is the set of all operators T : X —• F , 
such that there exists an injection J into a larger Banach space Foo, such that 
JT € A(X,Yoo) and J(Y) is closed in F*,. The surjective hull A s u rJ(X ,F) is the 
set of all T : X —• F , such that there exists a surjection Q of X\ onto X, such that 
TQ € A(XUY). Obviously, A C A inj,A C A8ttrj, and Y^ resp. Yl can be chosen of 
type Joo(r) resp. lt(T). 

Theorem 3 . 1 . 

(a) Amj is the class of all operators which factor through a subspace of a Banach 
space with an unconditional basis. 

(b) A8urj is the class of all operators which factor through a quotient space of a 
space with an unconditional basis. 

PROOF : (a) Let T € A inj(X, F ) , then we have the factorization 

U 

This implies 

/ -» 

Q(X) Jү 
P | Q(X) 

This shows that T factors through the subspace Q(X) of a space U with an uncondi­
tional basis. On the other hand, if V is a subspace of a space with an unconditional 
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basis, then the diagram 

T 

X X 
loo(Г) 

V C u 

shows that the mapping JP can be extended to a mapping P . U —• loo(T), such 
that J T = PQ, and we see that JT is lucid by Theorem 1.2. 

(b) The proof of the second part of Theorem 3.1 uses similar arguments. • 
Since every separable Banach space is isomorphic to a quotient of /j, A*UT* consists 

of all operators with a separable range. Also it is true that any separable Banach 
space X is the range of a lucid mapping: trivially take the canonical surjection 
Q : h —• X if X is isomorphic to /i/N, N a closed subspace of l\. X is isomorphic 
to a subspace of a space with an unconditional basis iff Ix € AlnK Since every 
compact operator factors through a subspace of Co, we have K C AlnK 

A third interesting example of a hull ideal of A is the so-called regular hull Areg 

(see [9]). The ideal Areg consists of the operators T : X —• Y such that j o T € 
A(K, F**) where j : Y —• F** is the canonical embedding. 

Proposition 3.2. The operator ideal A is not regular, that is, A is a proper subclass 
o/Arcg. 

PROOF : There is a Banach space X such that Ix is not lucid but the canonical 
embedding j : X —• X** is: 
Let X be the Lindenstrauss space (see [4]) which is defined to be the kernel of any 
surjection from h onto J-a[0,1]. In [6] it is shown that X is not a complemented 
subspace of a Banach space with an unconditional basis, and so Ix is not lucid. On 
the other hand in [4j it is shown that 

X x x = {z € lT\z(y) = 0 for each y £ 11 s.t. y(x) = 0 for each x € X}, 

the biannihilator of X in /**, is complemented in /** and there is an isometry 
T : X-11- -4 K**such that T | X is the identity of X. So we obtain the following 
factorization of j with canonical mappings: 

1 
^C * i** • xx± 

Since the diagram commutes, j is lucid and we have Ix € Areg but Ix $ A. • 
Since X is isomorphic to a subspace of a space with an unconditional basis iff 

IX € AinJ, and every compact operator factors through a subspace of c0, we have 
K C Aifti. 
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Another procedure for forming a new ideal from a given one is the construction 
ofAdlud: 
Adu*i(x,y) i s the set of all T : X -> Y such that T< : Y* -» .X* belongs to A. An 
ideal X is said to be symmetric iff I C Tdttal. Without additional assumptions A 
is far from being symmetric: the identity on h is in A, but not its adjoint, hence 
A £ Adual; on the other hand, the identity on C(u>w) does not belong to A [5], but 
its adjoint does, since C(u;w) is isometrically isomorphic l\. Hence Adual <£ A. 

T h e o r e m 3 .3 . Let X be a Banach space. Then X* does not contain a subspace 
isomorphic to Co if and only if for every Banach space Y 

A ( I , F ) c A d u a l ( X , r ) . 

PROOF : If X* contains a subspace isomorphic to c©, then X contains a comple­
mented subspace X\ isomorphic to l\ [4, p. 41]. Let P : X —i• X\ be a projection, 
J : Xi —• h an isomorphism and Y = 1%, and let T be defined by T = J P. Then 
T* : loo —> X* is lucid by assumption. We will construct a contradiction by show­
ing that the range of T* is not separable, e.g. 37 > 0V(£n) € /oo ||Tf(£„)||x* -* 
7II(tn)I!fee- This follows from the inequalities 

||T««n)ll = sup |2>CT*)»I 

= sup | ^ ^ „ ( J P ( x ) ) „ | > sup |Vj£„(Jz )„ | 

II*II<1 ll*l|<-

> sup | ^ & y . | = ||J-1ir1ll(WH. 
IMI^III-1.!-1 

On the other hand, if X does not contain a subspace isomorphic to Co, and if 
T : X —• Y is lucid with a lucid representation Tx = £ an(-*0y*»> ̂ e n for all t € Y* 
we obtain (T*6(a;) = Yan(x)KVn)i *•«• ]CKl/n)an is ^-convergent to T*6 E K*. 
By a known lemma (see e.g. [13, p. 423]) £ 6n(y»i)an is a (T-unconditionally Cauchy 
sequence on X. Since X has no subspace isomorphic to Co, by a classical result of 
Pelczynski, J2KVn)an is norm-convergent with limit T*b hence Tlb = ]Cs/»Wan> 
and this series converges unconditionally. Thus Tf is lucid, i.e. T € Adual(K, Y). • 

Corollary 3.4. If Y is a Banach space such that IY is lucid and Y* does not 
contain a subspace isomorphic to c0 then IY* is lucid. 

PROOF : Letting X = Y in Theorem 3.3 yields A(F) C Adual(Y). Since Iy G A 
we have Jy € Ad u , a (y) , that is IY* € A. • 

Since a reflexive space does not contain a subspace isomorphic to Co, it follows 
from Corollary 3.4 that the following is true: 

Corollary 3.5. IfYis reflexive then IY is lucid if and only if IY* is lucid. 

Corollary 3.6. If Y is a Banach space with the properties: Y* does not contain 
a subspace isomorphic to c0 and 
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Y* is not separable (for example Y -= C[Q, 1]) 
then any embedding j : Y —> Z, where Z is another Banach space, j injective and 
j(Y) closed in Z, is not lucid. 

PROOF : Assume there is a Banach space Z and a lucid embedding j : Y —• Z 
as claimed. Theorem 3.3 yields A(F, Z) C Adt ta l(F, Z). Hence j is an element of 
Adua l(F, Z), that is jf : Z* —1> Y* is lucid, but this is impossible since Y* is assumed 
not to be separable. • 

Thus Theorem 3.3 together with Corollary 3.6 is a way to show that C[0,1] is 
not embeddable into a Banach space with an unconditional basis (the embedding 
operator j would be lucid) in terms of lucid mappings. 

4. Weakly nuclear operators , lucid operators and LUST. 
A class of operators which are closely related to approximable lucid operators is 

the ideal of weakly nuclear operators due to Pietsch [9, 23.2]. 
An operator T : X —> Y is said to be weakly nuclear, if there exist sequences 

(an) C X*,(yn) C Y, such that 

T=J2an®yn 

where this series is unconditionally convergent in the operator norm. Let Afa be the 
ideal of weakly nuclear operators endowed with the norm-topology given by 

i/„(T) = inf sup Y]\an(x)b(yn)\ 

N o ­

where the infimum is taken over all weakly nuclear representations of T. 

Proposition 4 . 1 . 

(a)(JV.,i/<-)c(A,A) 
(b) IfTe £ ( K , F ) , d i m K < oo, then ua(T) = \(T) 
(c) If X* and Y possess the metric approximation property then every degenerate 

TeC(X,Y) fulfils 
*v(T) = A(T). 

PROOF : (a) and (b) are elementary facts; (c) follows from an observation of 
H.U. Schwarz [12] because of the easy proved fact that ua(T) == A(T) for each 
T 6 C(X, Y) when X and Y are finite dimensional spaces. • 

Problems. 
Is it true that for every finite rank operator A(T) = vff(T)l 
Is M0 equal to A V\ A? 

There are two further procedures for forming ideals which are of interest in this 
context: 
Let (H, P) be an operator ideal. Then the maximal hull (Bm**, 0«-**) of (B, P) is the 
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class of all operators T £ C(X,Y), such that for all operators R € A(X0,X),S € 
.4(r,r0) hold STR € B(Xo,r0) with 

pm*x(T) = Bup{/3(STR): ||5|| < 1, ||T|| < 1}. 

The minimal kernel (Bmin, /3min) of (B, p) is defined as the class of all T € C(X, Y), 
such that there exist operators S € A(X,X0),R € B(X0,Y0),Q € -4(r0,r) with 
T = QRS and 

rin(T) = infillQII^^HSI^T = QRS}. 

Pietsch [6, 23.3.1] has shown that 

(Jv?ax^rx) = (^,^) 
where I„ is the class of all weakly integral operators, defined by the existence of 
a factorization through a Banach lattice. 

Thus Ix € ^ if and only if X has LUST, since in this case X** is a complemented 
subspace of a Banach lattice (see [1]), we obtain the following facts. 

Proposition 4.2. 
(a) (A m « , Am*x) = (yVm*x, */max) = ( I T X , *TX) 
(b) (Amin,Amin) = (N;,i/ty) 
(c) r has LUST if and only if for any Banach space X A(X, Y) C A(X, Y). 

((c) has been observed by Pietsch [9] in a similar manner for tfa instead of A.) 
PROOF : The proof of (a) uses the property, that the basis constructed in the proof 
of Theorem 1.2 is hyperorthogonal, thus the statement follows from [9, 23.3.4], (b) 
follows from [9, 23.3.2]. 
If r has LUST, then for every finite dimensional subspace Y0 C Y with its canonical 
embedding JY0 

A(Jy0) = inf{||P||.||Q||x(C!)}<X«W 

where Jy0 = PQ is a factorization through a space U with an unconditional basis. 
Let T € ^4(K,r),(Tn) an approximating sequence of finite rank operators. Since 
(Tn) is a || ||-Cauchy sequence, for e > 0 there exists ne, such that for n > 
ne \\Tn - Tm|| < e/Xu(Y). Let Y0 = span[Tnr, TmY] C Y, then 

A(Tn - Tm) =-= A(JYo(Tn - Tm)) < \(JYo) • ||Tn - Tm|| < e. 

Thus (Tn) is a A-Cauchy sequence with 

A~HmTn = TeA(X,r ) . 

If for all Banach spaces X 
A(x,Y)cA(X,Y), 

then IY € Amax = J?**. Then Y has a LUST. • 
Since C[0,1] is a space with LUST, we have e.g. IC[0fi\ € Amax. Hence Amax ^ 

Ain>. 
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