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ON PRIME AND PRINCIPAL IDEALS ON GRAPHS 

JUHANI NIEMINEN, Oulu 
(Received February 6, 1978) 

In the paper [4] we applied the concept of an ideal on a graph to analyzing 
structural properties of undirected graphs. The concept of an ideal on a graph is 
a generalization of the concept of convex sublattices of a lattice. In the recent paper 
[2] Duda and Chajda presented a generalization of ideals in lattices. This generaliza­
tion gave us hints for developing the analysis of graphs further by means of ideals 
on graphs. We shall present the concepts of prime and principal ideals on a graph 
and prove results analogous to that given by Balbes [1] concerning prime ideals 
on semilattices. 

We shall consider finite undirected and connected graphs G = (P(G), L(G)) only 
without loops and multiple lines, where P(G) is the set of points of G and L(G) its 
set of lines. SP is a mapping P(G)xP(G) -» 2F(G) defined as follows: 

SP(x, y) = {z | z e P(G) and z is on a shortest path joining x and y in (?}. 

In particular, {x,y} g SP(x9y) and SP(x9 x) = {x}9 x9yeP(G). Let U and W be 
two subsets of P(G), then SP(U9 W) = {z \ ze SP(u9 w) for some u and w9 usU 
and w e W}. A set U c P(G) is called an ideal of G9 if U * 0 and SP(U9 U) » U 
(cf. Nebesky [3]). By SPn(x9y) we denote the set SP(SPn'i(x9 y)9 SPn~l(x9y)). As 
we consider finite graphs only, there is for any pair x9 y e P(G) a value of n such 
that SPn(x9 y) is an ideal on G. We shall denote by SU(x9 y) the ideal constructed 
from a pair x9ye P(G) by means of sequential application of the SP-operation. 

If U and / are ideals on G and U n / ^ 0, then clearly U cs J is an ideal on G 
and it is the greatest ideal contained in U and / . Obviously, the ideals on G constitute 
a join-semilattice «/((?), where G is the greatest element and U v / denotes the least 
ideal on G that contains U and / . If we denote by 0 the least ideal on G9 S(G) is 
a lattice. 

We shall say that an ideal U on a graph G is prime if and only if the condition (P) 
holds for any two points a9 bteP(G)\U: (P) SP(a9 b) n U = 0. 

Theorem l.IfUisa prime ideal on a graph G9 then P(G)\U is a prime ideal, too. 
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Proof. According to the definitions of a prime ideal and an ideal, 
SP(P(G)\U, P(G)\U) g P(G)\U, whence P(G)\U is an idal on G. As U is an ideal 
SP(a, b)nU == SP(a, b) for each two element a,beU, whence P(G)\U is prime. 

Theorem 2. Aln ideal U of a graph G is prime if and only if the following condition 
holds: If SP(a9 b) n U & 0, then a or b belongs to Ufor any two points a, beP(G). 

The proof follows directly from the definition of a prime ideal. 
By using the same proof technique as used by Duda and Chajda in [2, Thm. 4], 

we obtain 

Theorem 3. Let Ubea prime ideal of a graph G and let I,Je f(G). Iffd^InJc U, 
then Icz U or J <z U. 

We denote by (/] and [/) principal and dual principal ideal, respectively, induced 
by an element I in the lattice J(G). As well known, (J] is prime if and only if for any 
Jn+l 6(7], where 0 9-= Jn+X = Jx n ... n /„, at least one Jt belongs to (/], i = 
= 1,..., n (see e.g. Balbes [1]). 

Theorem 4. Let U be an ideal of a graph G. Uisa prime ideal on G if and only if(U\ 
is a prime ideal in J(G). 

Proof. 1° Let Ubea, prime ideal of G, 0 # / n + 1 = Jt n ... n Jn and Jn+l e (£/]. 
We denote J2n / 3 n ... n /„ = J2. As Jxn J2c U, Jx or J2 is contained in U 
according to Theorem 3. If Jt c U,(U"\ is prime in J(G), and if J2 c U, a similar 
way of deduction can be applied to J2 as above. After applying the deduction step 
n times, we see that at least one of the ideals Jt is contained in U, whence (£/] is 
a prime ideal in S(G). 

2° Let ([/] be a prime ideal in J(G) and let SP(a, b) n U # 0. According to the 
properties of J(G), there is a greatest element Je J(G) such that SU(a, b) n U = 
= / # 0. Obviously, SP(a, b) n U c / . If a or b belongs to / a U, there is nothing 
to prove, and hence we assume that a,b$Jc U. We shall show that under these 
assumptions SP(a, b) n J = 0, which is a contradiction. 

If there is a point x e J such that (t, x) (s, x) e L(G), where t,se SU(a, b)\J, then 
SU(t, x) n SU(s, x) = {x} c J c U. As (£/] is prime, SU(t, x) or SU(s, x) is contain­
ed in (£/], and thus t or s belongs to / , which is a contradiction. 

Let t e SU(a, b)\J, xeJand q be a point on a shortest path from t to x such that 
(qf y) e L(G) and y e J. As / i s an ideal on G, /contains all the points between y and x 
on this shortest path, and from the same reason, all the points between t and q on 
this shortest path do not belong to / . 

Assume that t and s are points of SU(a, b)\J such that (t, y), (s, x) e L(G) where 
y9xe J. If SU(t, x) n SU(s, x) « SU(x, x), we obtain a contradiction as above. 
Hence, for any such a point t as defined above it holds: SU(s, x) <= SU(t9 x). Let 
hi* hi> '~>hki te the points of SP(t9 x) n (SU(a, b)\J) being joined by a line to 
at least some point of / . If s$ Tt « {ti 1,. . . , ti*,}» we consider the points of Tx. 
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According to the observation above, SU(s, x) a SU(tit, x) for each i, i = I, ...9k%. 
By T2 we denote the set of points {t21, t22,..., t2k2}, where each of the points is 
joined by a line to at least some of the points in J and belongs to at least one of the 
sets SP(tii9x)r\(SU(a,b)\J)9 i = \,...,kx. If s$Tl9 we continue the process 
described before. The facts, that (s, x)eL(G), SU(s9 x) c SU(t9 x) for each t defined 
above and the finiteness of G, imply together that after a finite number of steps we 
shall find a T„ such that seT„. According to the determination process of the points 
in 7\, T2, ..., Tn, we can conclude that s e SP(t, x). Moreover, on the shortest path 
from t to x, on which s is, all the points between t and s do not belong to / according 
to the observation proved above. This proof can be repeated for any pair of points s 
and t defined above. As s is on the shortest path from t to x, the shortest path joining s 
and t is shorter than the shortest path from t to x. The basic assumption was that 
/ n SP(a, b) = 0, and hence there is at least one pair of points s and t through which 
the shortest path between a and b touch J. But the considerations above show that 
the shortest path joining s and t does not go through the points of / and hence 
J n SP(a, b) 7-= 0, which is the final contradiction. Thus we can conclude that at 
least a or b belongs to U, whence U is a prime ideal of G. 

Following Balbes [1], we call a graph G prime if for each meet Jx n ... n /„ = 
=- /„+!# 0iny(G)andforeach/€c/(G)itholds:/v J„+t = (/v Jt) n (Jv J2) n 
n ... n (I v /„). According to Theorem 4, the following theorem can now be proved 
by the dual of the proof technique used by Balbes [1, Thm. 2.2], and hence we 
omit the proof. 

Theorem 5. A graph G is prime if and only if for any pair /, Je*f(G), I, J & 0, 
and (/] n [/) = 0, there exists a prime ideal UofG such that I cz ((/] and (/] n [J) = 0. 

Thus the lattice */((?) offers a bridge for translating the results obtained in [1] 
to the case of prime graphs. We do not perform the translation work here but refer 
only to the paper [1]. 

We shall call a graph principal if for each collection C of points of G there is at 
least one point p such that (J {SP(x, p)\ xeC} is an ideal of G. Principal graphs 

X 

seem not to have as important role among graphs as their analogy in the paper [2] 
of Duda and Chajda. We present only a characterization of principal graphs in the 
next theorem. If a pointset C generates an ideal / -=- U {SP(x, p) | x € C} for some 

X 

point peC9 then I is called a principal ideal generated by C. 

Theorem 6. A graph G is principal if and only if for any three points x,y,ze P(G) 
there is a point, say z, such that SP(x, y) c SP(x, z) u SP(y, z). 

Proof. 1° Let G be a principal graph. Then for each x9y9 zsP(G)9 / « 
« SP(x9 z) u SP(y9 z) is an ideal of G. As x9 y e J, SP(x9 y) c J according to the 
definition of an ideal on a graph. 
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2° Let G satisfy the condition of the theorem for any triple x, y, z e P(G). If G 
contains a cycle of points in D, then D induces a complete subgraph of G, as in the 
other case we can always choose three points from the cycle such that the condition 
assumed be valid does not hold. Let.® = {Dx, ..., D„} be the collection of all maximal 
subgraphs of G. According to the observation above, Dt and D} can have at most 
one common point when i ^ j . We map G onto a graph G9 the points of which 
are labelled by the symbols Dx, ..., D„ and where a line joins two points D, and Dj 
whenever Df and D} have a common point in G. According to the property of G 
proved before and the connectivity of G, G9 is a tree. 

As one can easily see, each ideal of a tree is a subtree of Tand conversely. If C c 
<=. P(T), then the paths joining the points of C is a subtree of T and obviously it is 
a principal ideal generated by C on T. Hence each tree is a principal graph. One 
can also easily see that each complete graph is a principal graph. 

Let C c P(G). C is mapped under the mapping f9 induced by 3) onto points 
Dh of GB having the property: C n P(Dh) # 0 in G, where P(Dh) is the set of points 
of the maximal complete subgraph Dh in G. As G9 is a tree, the points/^(C) generate 
a principal ideal in G9. If we substitute a point in a tree by a complete graph, the 
graph such obtained is further a principal ideal. Hence C generates a principal ideal 
on G and G is a principal graph. 
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