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»

In this paper we consider the bilinear structure (M, w) determined by an arbitrary
bilinear form w on a differentiable manifold M. We prolong this structure on the
bilinear structure (TM, dQ) and study relations of (TM, d2) to (M, w). Our conside-
rations are in the category C.

1. Definition 1. Let M be a differentiable manifold, » = dim M. Let w be an
arbitrary bilinear form on M. The couple (M, w) will be called a bilinear structure.

Let (M, w) be a bilinear structure. Let X € T,,M. Denote by iy the contraction
of the tensor ® (iywe TaM, ixo(Y) = o(X, Y)) and by & the linear morphism
TM —» T*M, o(X) = ixw.

Let us recall that there is a bijection » of the set of all morphisms f: TM — T*M
to the set of all semi-basic Pfaff forms on TM. Let %(f) = ¢. Then

o(X) = {ny X, fp(X)),
where n : TM —» M, p : TTM — TM are fibre projections.

In our case denote by Q the semi-basic Pfaff form »(@). Let d be the symbol of
the exterior differentiation. Then (TM, dQ2) is a bilinear structure which will be
called the prolongation of (M, w).

Let (x%), or (x', y), or (x', z,), be a local chart on M, or TM, or T*M respectively.
Let o = a;,(x*) dx’ ® dx/. Then

i i
Q) @: {’z‘ o
J = % jy s
Q = a;;y'dx/,
da;

dQ = 3—‘{-}" dx* A dx! + a;;dy’ A dx?,
X

dQ;Y - [(%;‘L - %"-) a‘y' + a,jb'] dx? — a;;a’ dy’,

0

where ¥ = o' 2 + b2 e T(TM).
ox' dy
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Remark 1. In the case of a symmetric form w we have
Q = 1/24,T,

where T = w(X, X) is a function on TM determined by w and d, is vertical anti-
differentiation on TM (see [2], p. 165).

Remark 2. A semibasic Pfaff form Q on TM will be said to be #-form if %~ 1(Q):
TM — T*M is a linear morphism. It is easy to see that there is a bijection x of the
set of all #-forms on TM to the set of all bilinear forms on M.

Denote by K, the canonical identification T,,M = T,(T,,M). Let X be a vector
field on M. Let X,, mean the value of X at me M. Let X, = K,(X,,). ThenX : h + X,
is a vector field in TM.

Proposition 1. Let (M, w) be a bilinear structure on M. Let (TM, dQ) be the pro-
longation of (M, w). Let X be a vector field on M. Then

n*(ixw) = iy dQ.

Proof. X = a'0/ox', X = a'0/dy', ixw = (a;;@") dx!, i3 dQ = (a;;a’) dx’). This
gives our assertion.

A tangent vector X € T,,M, or a vector field X on M, is said to be associated at
m e M, or associated with (M, w) respectively if iyo = 0.

Corollary of Proposition 1. A vector field X on M is associated with (M, w) if and
only if the field X is associated with (TM, dQ). If a vertical tangent vector Y € T, T,,M
is associated with (TM, dQ) at h, then K,(Y) is assoczated with (M, w) atme M.

Let X,Y € T,,M. The linear morphism TM 25 T*M determined by &'(Y)(X)=
= w(X, Y)is called transposed to @. Let Q' be the semi-basic form on TM determined
by @'. The semi-bilinear structure (M, d(R2")) is called t-prolongation of (M, w). Let
us remark that if @ is symmetric, or antisymmetric, then @' = @, or @ = —®
respectively, and thus d(2) = —(d®)’, or d(') = (dQ)’ respectively. A tangent vector
X e T,M is said to be t-associated with (M, w) at me M if ®@'(X) = 0 = @(X). In
the case of a symmetric, or antisymmetric form w, any tangent vector associated
with (M, w) at m e M is 7-associated. There is such a nonsymmetric and nonanti-
symmetric form that there is a tangent vector associated and t-associated with
M, w).

A tangent vector Y e T,TM is called v-conjugate, or v’-conjugate with (M, w)
at he TM if iy dQ or iy d(Q) respectively is a semi-basic form on TM.

Proposition 2. Let Y e T,(TM), th = me M. Then Y is v'-conjugate with (M, w)
at h if and only if nyY is associated with (M, w) at m.
Proof. Let Y = a'9/dx* + b'9/dy’. Then

(¢) iy d(Q) = ¢, dx’ — a;a’ dy,
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where c; depends on (a'), (b%) and A = (x', y'). Comparing (2) with (1,) we get our
assertion.

Corollary. A4 projectable vector field Y on TM is v'-conjugate with (M, w) if and
only if T*Y is associated with (M, w).

Let X be a vector field on M. Denote by X*, or X*!, the prolongation of X on TM,
or T*M respectively.

Proposition 3. Let Y be a projectable vector field on TM which is v-confugate with
(M, w). Then Y is associated with (TM, dQ) at he TM if and only if

3) @Y, = (m Y)5h)-

Proof. Let a'd/ox’ + b'9/dy' be v-conjugate with (M, w). Then a0/ = 0 and
thus

da’
4 @l By g ———-O

Since n*Y = a'0/0x' we have

i
(m Y)*' = a'd/ox' — —:—sz‘ 0/oz,,
see [2], p. 134. Then
da'
(n,,Y)—(,,, = a'djox' - Ta,‘,y 6/62

Now the condition (3) has the following local form

da i aa !
©)] '5;‘,}0*)’ -al,bi ‘3—7 any'.

The vector field Y (being v-conjugate with (M, w)) is associated with (TM, dQ) if and
only if

(Za—i a*y' — Oau ay' +ayb' =0, e

ox* ox’
if and only if (5) (use the relations (4)) is true.

Proposition 4. Let X be a vector field on M. Let X', or X*!, be the prolongation
of X on TM, or T*M respectively. Then ®,(X}) = X5 for every he TM if and
only if Lyw = 0, where Ly denotes the Lie differentiation by X.

Proof. Let X = 4'9/0x', » = a;;dx' ® dx’. Then

da da* ‘ oa*
i k i Jj
Lyo= (—-—-La + ay, P +a‘,‘—-——ax1)dx ® dx/,

i
X! = a'9/ox' + —;’% 2 8]y,
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Oa; oa*
D (X)) =a'd/ox' + | —Lad*+q ay,— |y o]0z,
ox* ox'

i i 60" i
Xw('l) =a a/ax - -Ej-aiky 6/621.

Comparing Lyw with @, (X)) = w(h) we complete our proof.

Corollary. Let X be a vector field on M. Let X be t-associated with (M, »). Then X!
is associated with (TM, dQ) if and only if Lyw = 0.

Lemma 1. Let X be a vector field associated and <t-associated with (M, w). Let f be
an arbitrary real function on M. Then Lyxw = fLyw.
Proof. Let X = a'd/ox', a;;a' = 0, a;;a’ = 0. Then

aai aak 6a ik
L= — 2% _ Tk ) akdx! @ dx’.
" ( ox*  oax ox ) ®

Let X be a vector field on M. Denote by g,, or g,, the function Q(X?), or dQ(X, X*)
respectively.

Proposition 5. (i) The form dg, is a semibasic form on TM if and only if the field X
is t-associated with M, o).

(i) g = (X, X)).

Proof. Let X = 4'0/0x’. Then g, = a;;y'a’ and thus dg, = D;dx’ + a;;a’ dy".
It gives (i).

(i) We get directly dQ(X, X*) = a;a'd’ = n*(w(X, X)).

Proposition 6. Let (M, w) be a bilinear structure. Let X be a vector field on M.

Then
x(LXCD) = Lxxx(w).

Proof. Let a'0/dx' = X. Then

da* aa*\ _
L.(x(w)) = ——i a+a ay, 244 ay _a_) ¥ dx! = %(Lyw).
ox' ox’
Corollary. The form %(w) is invariant by X' if and only if the form w is invariant
by X.
Let X be a vector field on M and ¢ be an arbitrary p-form on M. Let us recall that
Ly = diy + iyd. Therefore
(6) d(Lxs) = dix ds.

Definition 2. Let X be a vector field on M. Let (M, w) be a bilinear structure. Then X
will be said to be the dynamic system of (M, w) if the form ixw is closed.
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Let X = a'0/ox', = a;; dx’ ® dx’. By the direct evaluation we get

da; da* da*
i = i J 224 gk htadil ¢ 4
(7)  d(ix1dQ) = A;;dx'A dx/ + ( P a + ay, P + ay 6xf)dy A dx’.

where 4;; are functions (local) on TM. The relation 7 immediately yields that the
form d(iy: dQ) is semibasic if and only if Lyw = 0.

Proposition 7. Let X be a vector field on M. Let (M, w) be a bilinear structure.
Then X' is a dynamic system of (TM, dQ) if and only if w is invariant by X.

Proof. If ix; dQ is closed then diy: d2 = 0 is semibasic and thus Lyw = 0.
Conversely, if Lyw = 0, then by Proposition 6 Ly:Q = 0. Then 0 = dL:Q =
= dixx dQ.

Corollary. The form diy: dQ is semibasic if and only if it is null, i.e. if ix:n dQ is
closed. As Ly dQ = diy dQ, the form df is invariant by X* if and only if w is in-
variant by X.

Lemma 2. Let w be an 2-form on M. Let X be a vector field on M. If iyw is closed,
then it is invariant by X.
Proof is obvious because Lyiyw = iy diyw.

Proposition 8. Let X be a vector field on M. Let (M, w) be a bilinear structure where w
is a closed 2-form. Then X is a dynamic system of (TM, dQ) if and only if X is a dynamic
system of (M, w).

Proof. By Proposition 7 iy, dQ is closed if and only if Lyw = 0. In the case of
a closed form Lyw = diyw.

Proposition 9. Let X be a vector field on M. Let w be a closed 2-form on M. Then
@x(Xy) = Xag for any he M if and only if ixw is closed.

Proof. Since Lyw = diyw. Proposition 4 completes our proof.

Further, let us suppose that the form  determining the bilinear structure (M, w)
is a form of a constant rank, i.e.

Proposition 10. The distribution Ker @ is integrable if and only if every subfield Y
of Ker @ is associated with (M, Lyw), where X is arbitrary subfield of Ker @.

Proof. Let X, Y be vector fields associated with (M, w). Then iyy0 =
= Lyiyw — iyLyw = —iyLyw. It gives our assertion.

Lemma 3. Let w be an 2-form. Then the distribution Ker @ is integrable if and only
if iyiy do = O for any vector subfields X, Y of Ker @.
It is true because iyLyw = iy(iy dw + diyw) = iyiy do.

Corollary. If o is a closed 2-form, then the distribution Ker @ is integrable. Hence
the distribution Ker dQ is integrable.

197




It is obvious that dim Ker dQ = dim Ker ®@. The relations (*,) directly yield that
the distribution Ker df2 is null if and only if Ker & is null. Let us recall that the
symplectic structure is a bilinear structure (M, ), where dim M = 2n, o is a closed
2-form and the distribution Ker @ is null. Let (M, w) be a bilinear structure. Then
(TM, dQ) is a symplectic structure if and only if the distribution Ker @ is null.

2, Examples. a. Let (M, w) be a quasi-Riemannian space, i.e. ® be a symmetric
and regular form of the second order on M.

Lemma 4. Let I' be a linear connection on TM. Let V be the covariant derivation
determined by I'. Let X, Y be vector fields on M and w be an arbitrary form on M.
Then

(8) Vyixco = ivyxw + ix Vyﬁ)

the mapping m + Ker @,, is a distribution on M.
Proof. Vi ¥ @ ) = VX Q@ w + X ® Vyo,

Ci(Vy(X ® w)) = C1(VyX ® 0) + Ci(X ® Vyo),

where C} denotes the contraction of Z ® w. As C; Vy = VyC}, the relation (8)
is true. '

Let us recall that every quasi-Riemannian structure (M, w) determines on TM
the unique linear connection (the quasi-Riemannian connection), the covatiant
derivation of which satisfies

(9) VxY - VYX = [X, Y],
(10) Vyo =0 for any Z.
Locally, let o = a;; dx' ® dx;, a;; = a;; and let
i
(11) V.Y = (-g% al + I‘;.,‘afb") djox',  see [3],
X
where Y = b! 3/8xi, X = @' 9/9x'. Then V is quasi-Riemannian if and only if
r ;k =T ijk,
aai S S
—6;;‘1 = a; I + ai Iy,
The local rule
(12 &5 ) o & ¥, ) = =) 59,

for the distribution T': TM — J'TM of the horizontal tangent subspaces follows
directly from (11). Every distribution 7': TM — J'TM detetmines on 7M the
differential equation P of the second order which is only in the case of linear
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connection a spray on TM. In our case, (12) yields
P = y'8/0x' — I'yy’y* 0/0y".

Sternberg, [4], proves that the spray P in the case of a Riemannian connection is
the geodesic spray (Euler vector field) of the Lagrange function T = 1 /2a,jy‘y ;- One
can easy observe that it is also true in the case of a quasi-Riemannian connection.
It immediately gives ’

Assertion. Let (M, w) be a quasi-Riemannian structure. Then the spray P of the
quasi-Riemannian connection on TM determined by (M, ) is a dynamic system of the
symplectic structure (TM, dQ).

Let X be a vector field on M. Denote by X the I'-lift of X in the case of a quasi-
Riemannian connection I'. By (12)

X =d'0/ox' - F'j,‘a’yk a/ay',
for X = a' 9/ox*. Using (9') and (10') we obtain by direct evaluation

13) Ly dQ = By, dx*A dx? + ay (F,’,ja" + —2%——) dy'a dx/,
- X
where B*; are some local function on TM. (13) immediately yields: If Ly dQ is semi-
basic at hy € T,,M, then it is semibasic at every h e T,,M.

Lemma 5, The form L3 dQ is semibasic at hy € T,,M if and only if Vy(ixw) = 0
for every Ye T M.
Proof. In the case of the quasi-Riemannian structure (M, w) the relation (8)
gives
Vy(ixw) = iy x0.

But ie yw is null if and only if VyX = 0. Since o is regular, the comparison of (11)
with (13) verifies our assertion.

Let I' be a linear connection on TM. Let I'" be transposed to I' and V' be the
covariant derivation determined by I'. In the paper [1] we have shown that

’YX = KY(XI - X)y,

where Ky denotes the canonical identification T,,M = Ty(T,,M), nY = m and X! is
the prolongation of X on TM. Let us recall that in the case of a quasi-Riemannian
connection I' = I'". Therefore, if I is quasi-Riemannian then VyX is null if and only
if Xy = Xy, Ye T,,M. Hence the form Ly d is semibasic at k, € T,,M if and only
if Xj = X, for every h e T,,M. Then L3 dQ is semibasic on TM if and only if X! = X.
But Lz dQ = diz dQ and by Corollary of Proposition 7 the form diy: df2 is semibasic
if and only if is null. We summarize our result in theorem form
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Proposition 11. Let (M, w) be a quasi-Riemannian structure. Let X be a vector
field on M and X be its I'-lift by the quasi-Riemannian connection I'. Then X is a dynamic
system of the symplectic structure (TM, dQ) if and only if X = X*.

Corollary. By Corollary of Proposition 7, the form dRQ is invariant by X* if and only
if the form w is invariant by X. Hence if X is a dynamic system of the prolongation
(TM, dQ) of a quasi-Riemannian structure, then Ly dQ = 0.

b. Let (M, w) be a ‘symplectic structure. Then its prolongation (TM, dQ) is also
symplectic. Proposition 8 yields.

Proposition 12. Let X be a vector field on M and X! be its prolongation on TM.
Let (M, w) be a symplectic structure. Then X* is a dynamic system of (TM, dQ) if and
only if X is a dynamic system of (M, »), i.e. if and only if w is invariant by X.

¢. Let (M, ) be a contact structure, dim M = 2»n + 1, « is a Pfaff form on M.
Then (M, do) is a bilinear structure. Let us recall that there is the unique tangent
vector field Y on M (dynamic system of the contact structure (M, «)) for which a(Y) =
= 1, do(Y) = 0. Then Y is associated with (M, da). Locally (see for example [2]).

2n
(14) «=dx' + Y xdx'*?,

i=2

2b
o =da=Y dx'a dx'*!,
i=2

2n 2n
Q= z yi dxl'+l - z yi+1 dxi’
i=2 i=2
2n 2n
dQ = Y dy'a dx™*' = ¥ dytt A dxl
i=2 i=2

Hence Y = 0/ox' is the dynamic system of (M, a). By Corollary of Proposition 1
the vector field ¥ = 9/dy! is associated with the bilinear structure (TM, dQ).

Lemma 6. Let Y be the dynamic system of a contact structure (M, a). Then do is
invariant by Y. :
Proof. Ly da = iyd(de) + diy da = 0.

Proposition 13. Let Y be the prolongation of the dynamic system of a contact
structure (M, o). Then Y is associated with the prolongation of the bilinear structure
M, o = da).

Our assertion follows from (14,).

Remark. Proposition 13 also follows from Lemma 6 and from Corollary of
Proposition 4 because the dynamic system of (M, a) is associated and t-associated
with (M, da).
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Proposition 14. Let Y be the prolongation of the dynamic system of (M, a). Thep
Dy Y} = Y* &(h).
It follows from Lemma 6 and Proposition 4.

Remark. The relation (14,) immediately yields that the distribution of the tangent
subspaces Ker df is generated by vector fields ¥* and Y.
3. Let w be an arbitrary bilinear form on M. Let us recall that there is such a unique
antisymetric form @~ that
o=0"+o0".

Denote by (TM, dQ*) the prolongation of (M, w*).

Lemma 7. Let (M, w) be a bilinear structure. Then the symmetry of  is a necessary
condition for (TM, dQ) to have a dynamic system being a differential equation of the
second order.

Proof. Letw = g;; dx' ® dx’. Let Y = y' 8/dx' + c'(x,, y*) 8/3y' be a differential
equation of the second order. Then our assertion follows from

LydQ = A;;dx* Adx! + B,;dy' Adx! + a;;dy' A dy.

Corollary. Let (M, w) be a bilinear structure. Let (M, »*) be a quasi-Riemannian
structure. Then the spray P of (M, w*) is a dynamic system of (M, w) if and only if
(M, w) is also a quasi-Riemannian structure.
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