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OF ENERGY^MOMENTUM TENSORS 

IN GENERAL RELATIVITY* 
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(Received November 17,1981) 

INTRODUCTION 

Of the many significant developments in General Relativity in recent years, one 
of the most important is the classification of the Weyl tensor given by Petrov [1], 
His work together with that of Pirani [2], Bel [3], Penrose [4] and others has 
enabled many branches of Einstein's theory to be rephrased in a more systematic 
and transparent style. Now whereas the Weyl tensor describes what might loosely 
be called the purely gravitational properties of space-time, the physical content of 
space-time is represented by the matter or energy-momentum tensor. This tensor 
plays the role of the source term in Einstein's equations and following initial work 
by Churchill [5] and Plebanski [6] there has been much recent interest in its 
classification. The technical details of the classification of second order symmetric 
tensors in space-time have been described in detail elsewhere and only a brief 
summary of the relevant parts need be given here. This will be done in section 2, 
the rest of this section being given over to a summary of the notation used. The 
remainder of the paper will be devoted to some physical applications of the energy 
momentum.tensor classification. It is appropriate here to keep the discussion brief 
and to the point with further details being given elsewhere. 

A conventional notation will be used throughout, with M representing a space-
time, that is a four dimensional real manifold carrying a global Lorentz metric 
of signature F 2. Although other structures and restrictions are necessary to make M 
a realistic model of space-time, these need not concern us here. If p e My TP(M) 
will denote the tangent space to M at p. Latin indices will take the values 0,1,2,3, 
a comma will denote partial differentiation and a semi-colon covariant differentia­
tion. The Riemanii, Weyl, Ricci, metric and energy-momentum tensors will be 
denoted in component form by .R^, <?«*«,, R&, g* and Toh respectively and the 

• (Deliveied at the Joint Czech-Poltth-O.D.R Conference on Deferential Oeometty and its 
Applications, September 1980, Nové Město na Moravě, Czechoslovakia.) 

tea 



Ricci scalar by-J?. A second order skew symmetric tensor (2-form) will be called 
a bivcctor and round and square brackets will denote respectively the usual 
symmetrisation and skew-symmetrisation of indices. Finally the symbol * in the 
appropratc place will denote the duality operator. 

At p 6 M9 it is convenient to introduce a real null tetrad of members of TP(M) 
with components la

9 m
a

9 x
a

9 y
a

9 where the only non-vanishing inner products 
between the tetrad members are lama = xaxa = yaya = 1. From this tetrad one 
can construct a complex null tetrad la

9 m
a

9 t
a
9 i

a
9 where y[2ta -= x* + iya and where 

a bar denotes complex conjugation. The only non vanishing inner products here are 
lmmm =- taia =- 1. From the latter tetrad one can construct the complex bivectors 

(1.1) Vab = 2liaibl9 Mab = 2liamb} + 2iiatbl9 Uab = 2miatbV 

and their conjugates where ta is assumed oriented so that the bivectors (1.1) satisfy 
* 

the self dual conditions Vab = — iVab etc. and their conjugates the anti-self dual 
* 

conditions Vab = iVab. The only non vanishing inner products between the bi­
vectors (1.1) and their conjugates are UabV

ab = UabV
ab = 2, MabM

ab =- M^M"* = 
« - 4 . 

The following equations will be required in what is to follow. 

(a) Robed — Cabcd + Eabcd + "jT -3£o[c&4}fr> 

(b) 

(1.2) (c) Ra 

(d) 

(e) 

(0 . 

Here, Rab is the trace-free Ricci tensor and the equations (f) are the Einstein field 
equations. 

2. THE CLASSIFICATION 

The Pctrov classification of the Weyl tensor (Riemann tensor in vacuo) splits 
up gravitational fields into the (algebraically) general type I and the more specialised 
types II, HI, TV, D and 0. (For a comprehensive and recent account see [7]). The 
classification of a symmetric second order tensor at a point pe Mis based on the 
Scgr6 type of this tensor when it is considered in the usual way as a linear map 
TP(M)'..-> TP(M). The Lorentz signature of the metric and the symmetry of the 
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Eabcd = Ra[c8dìb + Rbtd&cЏ9 

RщcЪ* Rab = Rab ~~ ~Ą R%aЪ> R = RabZ**' 

EaЪcd — ~~EaЪcd> ^abcd *= ~~EcdaЪ> 

Kcb в Rab> Eac% - 0 , 

GaЪ s Rab ~~ ~2 R8aЪ ~ в я T ^ . 



tensor forbids certain Segrd types and at pe M, one may always choose a null 
tetrad such that the symmetric tensor in question (here taken to be the Ricci tensor 
for convenience although the same comments apply to any symmetric tensor) takes 
one of the following forms 

(a) Rab = 2Qtl(amb) + Q2(lJb + mamb) + Q3xaxb + Qajjr., 

(b) R0b = 2QHamb) ± ljb + Q2xaxb + Q3yayb> 
(2.1) (c) Rab = 2Qjiamb) + 2l(axb) + Qxxaxb + Q2yayb, 

(d) Rab = 2Qil(«mb) + ^ ( ' a - rnamb) + £3xax6 + Q^y^ (Q2 ¥> 0), 

where the g's are real numbers. The Segr6 types here are respectively {1, 1,1, 1}, 
{2,1,1}, {3,1} and {z, z, 1,1}, the latter being the only one where complex 
eigenvalues occur. A detailed review of the derivation of these types can be found 
in [8]. An alternative way of looking at this is to note that the algebraic properties 
of Rab and Rab are essentially the same and that Rab and the tensor £^crf are related 
in a one to one correspondence by (1.2)(b). Hence one could, alternatively, classify 

+ 

the tensor Eabcd or equivalently the tensor Eabcd = Eabcd + iEabcd. (A tensor similar 
to EMU can be constructed from any tracefree symmetric second order tensor). 
The tensor Eabcd has the algebraic symmetries of the Riemann tensor and Eabcd 

satisfies 
#+ 

(2.2) Eabcd = Ecdab, Eabcd — —Eabcd — — Eabcd> Eacb — Rab. 

When the classification is cast into this form, one may borrow many techniques used 
+ 

in the Petrov classification. In fact it follows from (2.2) that the tensor E^ may be 
decomposed in terms of the complex bivectors (1.1) and their conjugates and cor­
responding to the canonical forms (2.1) one has respectively the following forms 

+ 

for Ea9cd in the appropriate complex null tetrad [8, 9] 

(a) Eabcd - iix(UabUcd + VabVcd) + ixAMa + »3(OabVcd + V^UJ, 

(2.3) (b) Eabcd - uxVabVcd + \i2MabMcd + MU+V* + VMfa * 0), 

(c) Eat* « vWubM^U^V^VjJ^ + Vt(V+H* + M^V^Qi, + 0), 

(d) kbca - HlWa+Ua-VrtV*) + \L2MabMcd + ^(U^V,, + V+UJfoi # 0), 

where the it's may always be chosen real. From these equations it is noted that the 
Ricci tensor can be associated with up to three complex self dual bivectors (c. f. 
Maxwell's theory). These equations are intimately connected with the invariant 
2-space structure of R& [5, 8, 9]. 

The tensor Eabcd ( # 0 ) allows a natural analogue of the Bel criteria [3] for the 
Weyl tensor. This can be summarised as follows [8,9]: 
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(i) The Ricci tensor has Segrt type {(2,1,1)} if and only if there exists la e TP(M)9 

I* # 0, such that I'E^a * 0. The vector la is necessarily null, unique up to a real 
factor and coincides with the (unique) null Ricci eigendirection. 

(ii) The Ricci tensor has Segr6 type {(3,1)} if and only if there exists a non-zero 
null bivector Fab at p and a vector la e Tp(M) such that laEabcd « lbFcd. Again /* is 
necessarily null, unique up to a real factor and coincides with the (unique) null 
Ricci eigendirection and the (unique) repeated principal null direction of Fab. 

(iii) A non-zero null vector la e Tp(M) is a Ricci eigenvector if and only if there 
exists a € R such that lalcEabcd = albld. 

(iv) If /* is a non-zero null vector in TP(M) then Rabl
alh = 0 if and only if 

The criterion (iv) is the natural analogue of the Debever-Penrose condition on 
the Weyl tensor. 

One can now see from (1.2) (a) the algebraic structure of the Riemann tensor 
completely in terms of the Petrov type of Cabcd and the canonical type for Eahed. 

3. ENERGY CONDITIONS 

The well known energy-momentum tensors used in general relativity can be 
classified according to the scheme outlined in section 2. Thus, for example, null 
Maxwell fields have an energy-momentum tensor of type {(2, 1, 1)} with zero 
eigenvalue, non-null Maxwell fields have type {(1, 1) (1, 1)} with equal and opposite 
eigenvaues and perfect fluids have type {1, (1, 1, 1)}. A major restriction on the 
possible type of non-zero energy-momentum tensor is provided by the "energy 
conditions" [10]. These are (i) for each timelike vector ua

9 Tabtfu
h ^ 0, (ii) for 

each timelike vector ua
9 T^ub is non-spacelike. It turns out that no energy momentum 

tensor of Segre type {3,1} or {z, z, 1, 1} can satisfy either of the energy conditions, 
that if Tab is of type {2,1, 1}, then (i) and (ii) hold if and only if Qt ^ 0 and QX <S| 
s» Qzf Qs S — Qi in (2.1) (b) and the optipnal sign in this equation is positive and 
that if Tab is of type {1,1,1,1} then (i) and (ii) hold if and only if Q% g 0, #2 £ 0 
and QX - g2 £ Q*,Q4 S Q2 - Qi in (2.1) (a) [6, 8, 10]. 

The condition (i) above may be replaced by the condition Tabu
auh > 0 for all 

timelike vectors ua without changing the joint conditions (i) and (ii) since if (i) 
arid (ii) hold but Tabu

aub = 0 for some non-zero timelike vector tf9 then by (ii), 
T^u* » 0. So T^ has a timelike eigenvector and is thus of type {1,1,1,1} [8]. 
But the corresponding eigenvalue is zero (QX -*- Q2 in (2.1) (a)) and so the above 
conditions imply that Tab = 0. The result then folldws. 
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4. APPLICATIONS 

In this final section some brief remarks and discussion will be presented about 
the applications of the classification. Further details will be given elsewhere. 

(i) An energy-momentum tensor of a given type will have a uniquely determined 
minimal polynomial which will yield a certain contracted identity on 1^. For 
example, if Tab has Segr6 type {(2, 1,1)} with zero eigenvalue, this identity is 
TaTb = 0, a relation which in fact characterises this type if T^ # 0. This relation 
together with the positivity of energy condition constitutes the algebraic Rainich 
condition for a null Maxwell field. For a non-null Maxwell field, T^ has Segri 
type {(1, 1) (1, 1)} with equal and opposite eigenvalues and a minimal polynomial 

relation Tb
aT

c
b ^-j(TbdT

bd) dc
a where TMTM & 0. Here however one cannot deduce 

the converse result because the Segr6 type and the minimal polynomial for Tab do 
not always have a one to one correspondence. Here one needs an extra condition, 
say Ta = 0, in order to be able to deduce the Segri type. These relations together 
with the positivity of energy condition are the algebraic Rainich conditions for 
a non-null Maxwell field. In general, the minimal polynomial relation allows the 
setting up of generalised algebraic Rainich conditions for each Tab (however a few 
ambiguities like the one mentioned above exist and need extra relations). 

(ii) Pirani [2] and Szekeres [11] have studied the scattering effects of a gravita­
tional field on a cloud of uncharged non-rotating test particles by considering the 
equation of geodesic deviation 

Sxa = Ra
MubudSxc

9 (4.1) 

where Sxa represents the connecting vector joining a particular particle (the 
observer) to a neighbouring particle, ua is the tangent vector to the observer's 
geodesic world line and uaua = — 1, 8x"ua = 0. Equation (4.1) can be thought of 
as representing the individual contributions from the Weyl tensor Cabc4 and the 

energy-momentum tensor I represented by Eabcd + ~rRgaicgdy>)* The canonical 

forms for Eabed given in (2.3) enable this latter contribution to be evaluated (the 
Petrov forms of course enable the former to be evaluated). As an example, one 
might reasonably expect the energy-momentum tensor Tab of a "radiation" field in 
general relativity to satisfy the following conditions: (a) T^ admits a unique null 
eigendirection la

9 (b) in all the wave surfaces orthogonal to /*, the scattering is 
transverse. These two conditions can be shown to imply that T^OLIJI,, (type {(2,1,1)} 
with zero eigenvalue) the form usually assumed for such fields, and necessarily /* 
is geodesic. 

(iii) If a space-time is locally isotropic then the grou|f of motions involved puts 
certain restrictions on the allowed energy momentum tensors. The canonical forms 
of section 2 allow these restrictions to be evaluated easily [7,12,13]. 
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(iv) One recalls the elegant result concerning the asymptotic "peeling" behaviour 
of the Petrov types of the vacuum Riemann tensor given by Sachs [14] and by 
Newman and Penrose [15]. One might hope that under appropriate conditions, 
a similar asymptotic behaviour would hold for the Segr6 types of the energy-mo­
mentum tensor bearing in mind the comparisons made between the Petrov and 
Segre classifications mentioned in section 2. A very simple example of this property 
within special relativity can now be given by considering the energy-momentum 
tensor associated with the electromagnetic field of a charged particle. Starting with 
the solutions given in [16, 17] one finds for the (retarded) Maxwell bivector 

(4.2) Fab « r - ' F - y ^ j + r-2F2llambl, 

where r is the spatial distance between the field point and the retarded point in the 
Lorentz frame in which the charge is at rest at the retarded time, la is the null 
propagation vector and xa and m* are appropriately defined unit spacelike and 
null vectors respectively with laxa -= m*xa = 0. The quantities Ft and F2 depend 
on I* and the particle's charge and 4-acceleration. The corresponding energy-
momentum tensor then turns out to be 

(4.3) Tab = r~2TJalb + r~*T2ilaxb) + r~*T3(2liamb) - gab), 

where Tx, T2 and T3 depend on I* and the particle's charge and 4-acceleration. 
In (4.2), one recognises the peeling property of the Maxwell bivector, the two terms 
being null and non-null bivectors respectively. In (4.3), one sees the peeling off 
of the energy-momentum tensor, the terms being respectively of type {(2,1,1)} 
with zero eigenvalue (radiation term), type {(3, 1)} with zero eigenvalue and type 
{(1,1)(1, 1)} with equal and opposite eigenvalues (Coulomb term) (c.f. [18]). 

(v) Suppose now that a space time admits a group of motions. The Lie derivative 

(denoted by JSf̂ » where <* is the appropriate Killing vector) of Eabcd is zero by 
Einstein's equations and this puts restrictions on the bivectors in terms of which 

•f 

Eabci is expressed in its canonical decomposition and hence restrictions on the 
physical characteristics of the field (for example the Maxwell bivector in an electro­
magnetic field or the fluid flow vector in a fluid field). For example, in a source-free 

+ 4- + 

Maxwell field (null or non-null) one has E&a -= CF^F^, where F& is the Maxwell 
• • * 

bivector, Fab ~ Fab + iF^ and C is a constant. Taking the Lie derivative of this 

equation and performing an obvious contraction gives Sg^F^ = aFab (aeC). 
A second similar contraction gives a = ip (fieU) and Maxwell's equations 

^ a O then imply that fi is a constant for a non-null field and that fi9a is pro­
portional to the repeated principal null direction of Fab for a null field. This gives 
a simple derivation of the results first given by Woolley [19] in the non-null case 
and by Coll [20] in the null case (see also [21, 22]). 
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(vi) The canonical expression of the tensor Eabci in terms of biveetors topther 
with the similar Petrov decomposition for CaM enables one in principle to calculate 
the infinitesimal holonomy group of a space-time in a similar fashion to that for 
vacuum space-times [23, 24], 

(vii) In this final section, an alternative approach to the classification problem 
is briefly discussed. This approach was first given by Penrose [18] and was 
considered further by Cormack and Hall [25] where it was shown to be essentially 
equivalent to one given by Ludwig and Scanlon [26]. Consider the set P 3 (C) of 
all non-zero complex directions at p. The trace-free Ricci tensor and the metric 
tensor define two quadric surfaces Rabx*xb «• 0 and g^x* == G in P3(C) where 
the x* are homogeneous coordinates. The intersection of these quadrics is a quartic 
curve \i which is representative of the algebraic structure of Rab. One then classifies 
Mab by classifying /i according to (a) whether p, is irreducible or decomposes into 
irreducible curves of lower order and the exact nature of such a decomposition, 
(b) the multiple point structure of /J, (C) the number and nature of the real points 
in which \a intersects the quadric &,*>**** =*- 0. With regard to the apparent com* 
plexity of the criteria (a), (b) and (c), the following remarks are reassuring. Firstly, 
the possibility of a twisted cubic component in (a) is ruled out by the fact that the 
two quadrics considered are simulateneously real. Secondly, one only needs to 
consider the real multiple points in (b) since the complex multiple points do not 
refine the classification. Finally, one only needs to consider the number of one 
dimensional real parts in which p, intersects gabx*x? == 0, since discrete intersections 
again do not refine the classification. The relationship between the resulting 
classification scheme and that arising from the Segri type and the Ludwig-Scanlon 
approaches is given in detail in [25]. 
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