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INTRODUCTION

Of the many significant developments in General Relativity in recent years, one
of the most important is the classification of the Weyl tensor given by Petrov [1].
His work together with that of Pirani [2], Bel [3], Penrose [4] and others has
enabled many branches of Einstein’s theory to be rephrased in a more systematic
and transparent style. Now whereas the Weyl tensor describes what might loosely
be called the purely gravitational properties of space-time, the physical content of
space-time is represented by the matter or energy-momentum tensor. This tensor
plays the rdle of the source term in Einstein’s equations and following initial work
by Churchill [5] and Plebanski [6] there has been much recent interest in its
classification. The technical details of the classification of second order symmetric
tensors in space-time have been described in detail elsewhere and only a brief
summary of the relevant parts need be given here. This will be done in section 2,
the rest of this section being given over to a summary of the notation used. The
remainder of the paper will be devoted to some physical applications of the energy
momentum tensor classification. It is appropriate here to keep the discussion brief
and to the point with further details being given elsewhere.

A conventional notation will be used throughout, with M representing a space-
time, that is a four dimensional real manifold carrying a global Lorentz metric
of signature +2. Although other structures and restrictions are necessary to make M
a realistic model of space-time, these need not concern us here. If p e M, T,;(M)
will denote the tangent space to M at p. Latin indices will take the values 0, 1,2, 3,
a comma will denote partial differentiation and a semi-colon covariant differentia-’
tion. The Riemann, Weyl, Ricci, metric and esiergy-momentum tensors will be
dendted in component form by Ry, Cusess Rep» e and T, réspectively and Athev 3

* (Delivered at the Joint Czech-Polish-G.D.R. Conferesice on Differential Geometry and its-
Applications, September 1980, Nové Mé&to na Moravé, Czechoslovakia.)' '
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Ricci scalar by-R. A second order skew symmetric tensor (2-form) will be called
a bivector and round and square brackets will denote respectively the usual
symmetrisation and skew-symmetrisation of indices. Finally the symbol * in the
approprate place will denote the duality operator. :

At p e M, it is convenient to introduce a real null tetrad of members of 7,(M)
with components % m® x°, y°, where the only non-vanishing inner products
between the tetrad members are /°m, = x*x, = y°y, = 1. From this tetrad one
can construct a complex null tetrad /%, m? °, 7°, where ﬁt“ = x* + iy® and where
a bar denotes complex conjugation. The only non vanishing inner products here are
1°m, = t°f, = 1. From the latter tetrad one can construct the complex bivectors

amn Vao = 2alyy, My, = 2limyy + 2i tyy, Uapp = 2my,ty),
and their conjugates where ¢, is assumed oriented so that the bivectors (1.1) satisfy
*

the self dual conditions V,, = —iV,, etc. and their conjugates the anti-self dual

*
conditions V,, = iV,,. The only non vanishing inner products between the bi-
vectors (1.1) and their conjugates are U,V = U,V* = 2, M ,M*® = M, M =
= —4,
The following equations will be required in what is to follow.

(@) , Ruscs = Casca + Eupea + ‘;—R&(cgm,
(b) Epea = Ry8ap + Roaeras
(12) ©  Re=Ra, Ro=Ro-3Rgw, R=Rug®
) *Epc = —Epcas  Eivca= —Elus
© Eew=Rs, E5=0,
" . Gu =Ry — -;-Rg,, = 8nT,.

Here, R,, is the trace-free Ricci tensor and the equations (f) are the Einstein field
equations.

2. THE CLASSIFICATION

The Petrov classification of the Weyl tensor (Riemann tensor in vacuo) splits
up gravitational fields into the (algebraically) general type I and the more specialised
types II, III, N, D and 0. (For a comprehensive and recent account see [7]). The
classification of a symmetric second order tensor at a point p € M is based on the

. Segré type of this tensor when it is considered in the usual way as-a linear map

T,(M) - T,(M). The Lorentz signature of the nietric and the symmetry of the



tensor forbids certain Segré types and at p e M, one may always choose a null
tetrad such that the symmetric tensor in question (here taken to be the Ricci tensor
for convenience although the same comments apply to any symmetric tensor) takes
one of the followmg forms

(@)  Ruy = 20,0 my + @;(Lly + mmy) + @3X.Xy + QaValss

()  Ra = 20,y t Ll + 02X.% + 03VaVs
(2.1) (© Rap = 20,0 amyy + 2 Xy + @1XaXy + Q2Vals

(d) R = 20,0amyy + Lol — memy) + 03X.Xy + 04VaYs (02 # 0),
where the g’s are real numbers. The Segré types here are respectively {1, 1, 1, 1},
{2,1,1}, {3,1} and {z, z, 1,1}, the latter being the only one where complex
eigenvalues occur. A detailed review of the derivation of these types can be found
in [8]. An alternative way of looking at this is to note that the algebraic properties
of R,, and R,, are essentially the same and that R, and the tensor E,,, are related
in a one to one correspondence by (1.2)(b). Hence one could, alternatively, classify

the tensor E,,., or equivalently the tensor E,py = Eupeq + iEyca- (A tensor similar
to E,.4 can be constructed from any tracefree symmetric second order tensor).
*

The tensor E,, , has the algebraic symmetries of the Riemann tensor and E,,,
satisfies

+% + *+

+ + +
(22) Eabcd = Ecdab ’ Eabcd = —Eabcd = - abed > E:tb = Rab'
When the classification is cast into this form, one may borrow many techniques used
: +

in the Petrov classification. In fact it follows from (2.2) that the tensor E,, 4 may be
decompdsed in terms of the complex bivectors (1.1) and their conjugates and cor-
responding to the canonical forms (2.1) one has respectively the following forms

for E‘,.,,, in the appropriate complex null tetrad [8, 9]
(a) ‘éabcd = 1(OpU + VaVed) + 2 MMy + 13U Ves + VU,
(2,3) (0) Eusea = 11, VarVeg + 1:MuMos + 3(TVes + ViU iy # 0),
© Eacs = 1i(FaMou=20uVes= 27U + bs(PusMes + HaV iz # 0,
@) Euncs = 11(UaUsi=VaVod + 1 MMy + 35(OaVes + Vo Uty # 0),

where the y’s may always be chosen real. From these equations it is noted that the
Ricci tensor can be associated with up to three complex self dual bivectors (c. f.
Maxwell’s theory). These equations are. 1nt1mately connected with the invariant
2-space structure of R,, [5, 8, 9].

The tensor E,., (# 0) allows a natural analogue of the Bel crxtena [3] for the
Weyl tensor. This can be summarised as follows [8, 9]:
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(i) The Ricci tensor has Segré type {(2, 1, 1)} if and only if there exists I € T,(M),
I* # 0, such that [E,;.4 = 0. The vector [ is necessarily null, unique up to a real
factor and coincides with the (unique) null Ricci eigendirection.

(ii) The Ricci tensor has Segré type {(3, 1)} if and only if there exists a non-zero
null bivector F,, at p and a vector I € T, (M) such that I°E,,.4 = [,F,. Again [*is
necessarily null, unique up to a real factor and coincides with the (unique) null
Ricci eigendirection and the (unique) repeated principal null direction of F,,.

(iii) A non-zero null vector /“ € T,(M) is a Ricci eigenvector if and only if there
exists a € R such that I°I°E,; 4 = alyl,.

(iv) If I° is a non-zero null vector in T,(M) then R,/*/* = O if and only if
Pl E pyepal = O.

The criterion (iv) is the natural analogue of the Debever-Penrose condition on
the Weyl tensor.

One can now see from (1.2) (a) the algebraic structure of the Riemann tensor
completely in terms of the Petrov type of C,., and the canonical type for E,,,.

3. ENERGY CONDITIONS

The well known energy-momentum tensors used in general relativity can be
classified according to the scheme outlined in section 2. Thus, for example, null
Maxwell fields have an energy-momentum tensor of type {(2, 1, 1)} with zero
eigenvalue, non-null Maxwell fields have type {(1, 1) (1, 1)} with equal and opposite
eigenvaues and perfect fluids have type {l, (1, 1, 1)}. A major restriction on the
possible type of non-zero energy-momentum tensor is provided by the ‘‘energy
conditions” [10]. These are (i) for each timelike vector u° T,u°u® = 0, (ii) for
each timelike vector «°, Tyu® is non-spacelike. It turns out that no energy momentum
tensor of Segré type {3, 1} or {z, Z, 1, 1} can satisfy either of the energy conditions,
that if T, is of type {2, 1, 1}, then (i) and (ii) hold if and only if g, £ 0 and g, <
=< 02,03 S —0, in (2.1) (b) and the optional sign in this equation is positive and
that if T, is of type {1, 1, 1, 1} then (i) and (ii) hold if and only if g, £ 0,9, = 0
and ¢; — @2 S 03, 04 S 02 — 0, in (2.1) (3) [6, 8, 10].

The condition (i) above may be replaced by the condition T,uu® > 0 for all
timelike vectors u® without changing the joint conditions (i) and (ii) since if (i)
and (ii) hold but T,u*" = 0 for some non-zero timelike vector *, then by (ii),
Tu* = 0. So T,, has a timelike eigenvector and is thus of type {1, 1,1, 1} [8].
But the corresponding eigenvalue is zero (¢; = ¢, in (2.1) (3)) and so the above
conditions imply that T,, = 0. The result then follows.
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4. APPLICATIONS

In this final section some brief remarks and discussion will be presented about
the applications of the classification. Further details will be given elsewhere.

(i) An energy-momentum tensor of a given type will have a uniquely determined
minimal polynomial which will yield a certain contracted identity on T,,. For
example, if T, has Segré type {(2,1,1)} with zero eigenvalue, this identity is
T T§ = 0, a relation which in fact characterises this type if T,, # 0. This relation
together with the positivity of energy condition constitutes the algebraic Rainich
condition for a null Maxwell field. For a non-null Maxwell field, T,, has Segré
type {(1, 1) (1, 1)} with equal and opposite eigenvalues and a minimal polynomial

relation T2T§ --*—i— (T, T%) &85 where T,,T* # 0. Here however one cannot deduce

the converse result because the Segré type and the minimal polynomial for 7, do
not always have a one to one correspondence. Here one needs an extra condition,
say T3 = 0, in order to be able to deduce the Segré type. These relations together
with the positivity of energy condition are the algebraic Rainich conditions for
a non-null Maxwell field. In general, the minimal polynomial relation allows the
setting up of generalised algebraic Rainich conditions for each T,, (however a few
ambiguities like the one mentioned above exist and need extra relations).

(i) Pirani [2] and Szekeres [11] have studied the scattering effects of a gravita-
tional field on a cloud of uncharged non-rotating test particles by considering the
equation of geodesic deviation

' 8%° = Ry uPuloxt, 4.1)

where 0x° represents the connecting vector joining a particular particle (the
observer) to a neighbouring particle, 4° is the tangent vector to the observer’s
geodesic world line and u®y, = —1, dx°u, = 0. Equation (4.1) can be thought of
as representing the individual contributions from the Weyl tensor C, . and the

1 .
energy-momentum tensor | represented by E,.4 + —6—Rg,[¢g,,1,, .- The canonical

forms for E,,.4 given in (2.3) enable this latter contribution to be evaluated (the
Petrov forms of course enable the former to be evaluated). As an example, one
might reasonably expect the energy-momentum tensor T, of a “radiation” field in
general relativity to satisfy the following conditions: (a) T,, admits a unique null
eigendirection /% (b) in all the wave surfaces orthogonal to /% the scattering is
transverse. These two conditions can be shown to imply that T,,al,/,, (type {(2,1,1)}
with zero eigenvalue) the form usually assumed for such fields, and necessarily /2
is geodesic. '

(iii) If a space-time is locally isotropic then the group of motions involved puts
certain restrictions on the allowed energy momentum tensors. The canonical forms
of section 2 allow these restrictions to be evaluated easily [7, 12, 13].
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(iv) One recalls the elegant result concerning the asymptotic *“peeling” behaviour
of the Petrov types of the vacuum Riemann tensor given by Sachs [14] and by
Newman and Penrose [15]. One might hope that under appropriate conditions,
a similar asymptotic behaviour would hold for the Segré types of the energy-mo-
mentum tensor bearing in mind the comparisons made between the Petrov and
Segré classifications mentioned in section 2. A very simple example of this property
within special relativity can now be given by considering the energy-momentum
tensor associated with the electromagnetic field of a charged particle. Starting with
the solutions given in [16, 17] one finds for the (retarded) Maxwell bivector

4.2) Fy = r™'Filixy + r~2Folimy,

where r is the spatial distance between the field point and the retarded point in the
Lorentz frame in which the charge is at rest at the retarded time, /® is the null
propagation vector and x® and m*® are appropriately defined unit spacelike and
null vectors respectively with /x, = m°x, = 0. The quantities F;, and F, depend
on /“ and the particle’s charge and 4-acceleration. The corresponding energy-
momentum tensor then turns out to be

(4.3) Tllb = ’—2T11¢Ib + r_JTz(Iaxb) + r-‘T3(2’(‘mb) - gﬂb)’

where T, T, and T, depend on /* and the particle’s charge and 4-acceleration.
In (4.2), one recognises the peeling property of the Maxwell bivector, the two terms
being null and non-null bivectors respectively. In (4.3), one sees the peeling off
of the energy-momentum tensor, the terms being respectively of type {(2, 1, 1)}
with zero eigenvalue (radiation term), type {(3, 1)} with zero eigenvalue and type
{(1, 1) (1, 1)} with equal and opposite eigenvalues (Coulomb term) (c.f. [18]).
(v) Suppose now that a space time admits a group of motions. The Lie derivative

(denoted by #,, where ¢ is the appropriate Killing vector) of E,4 is zero by
Einstein’s equations and this puts restrictions on the bivectors in terms of which
+

E,,.; is expressed in its canonical decomposition and hence restrictions on the

physical characteristics of the field (for example the Maxwell bivector in an electro-

magnetic field or the fluid flow vector in a fluid field). For example, in a source-free

Maxwell field (null or non-null) one has E,,., = CF,F_, where F,, is the Maxwell
*

+
bivector, F,, = F,, + iF,, and C is a constant. Taking the Lie derivative of this
N +. +
equation and performing an obvious contraction gives %;F,, = aF,, (x€C).
A second similar contraction gives a =if (feR) and Maxwell’s equations

L g

Ff; » = 0 then imply that f is a constant for a non-null field and that B,, is pro-
portional to the repeated principal null direction of F,, for a null field. This gives
a simple derivation of the results first given by Woolley [19] in'the non-null case
and by Coll [20] in the null case (see also [21, 22]).
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(vi) The canonical expression of the tensor E,,, in terms of bivectors together
with the similar Petrov decomposition for C,.4 enables one in principle to calculate
the infinitesimal holonomy group of a space-time in a similar fashion to that for
vacuum space-times [23, 24].

(vii) In this final section, an alternative approach to the classification problem
is briefly discussed. This approach was first given by Penrose [18] and was
considered further by Cormack and Hall [25] where it was shown to be essentially
equivalent to one given by Ludwig and Scanlon [26]. Consider the set P*(C) of
all non-zero complex directions at p. The trace-free Ricci tensor and the metric
tensor define two quadric surfaces R,,x°x® =0 and g,x°x* = 0 in P3(C) where
the x* are homogeneous coordinates. The intersection of these quadrics is a quartic
curve u which is representative of the algebraic structure of R,,. One then classifies
R,, by classifying u according to (a) whether u is irreducible or decomposes into
irreducible curves of lower order and the exact nature of such a decomposition,
(b) the multiple point structure of u, (c) the number and nature of the real points
in which p intersects the quadric g,,x*x? = 0. With regard to the apparent com-
plexity of the criteria (a), (b) and (c), the following remarks are reassuring. Firstly,
the possibility of a twisted cubic component in (a) is ruled out by the fact that the
two quadrics considered are simulateneously real. Secondly, one only needs to
consider the real multiple points in (b) since the complex multiple points do not
refine the classification. Finally, one only needs to consider the number of one
dimensional real parts in which u intersects g,,x*x® = 0, since discrete interséctions
again do not refine the classification. The relationship between the resulting
classification scheme and that arising from the Segré type and the Ludwig —Scanlon
approaches is given in detail in [25].
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