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VARIETIES WITH TOLERANCE
AND CONGRUENCE EXTENSION PROPERTY

IVAN CHAJDA
(Received February 8, 1982; revised February 13, 1984)

Abstract. A tolerance on an algebra U sia reflexive and symmetric binary relation on ¥ which
has the Substitution property with respect to all operations of A. An algebra U satisfies the
Tolerance Extension Property if each tolerance on any subalgebra B of U is a restriction of some
tolerance on U. The paper contains characterizations of such varieties of algebras in polynomial
conditions and characterizations of varieties with Congruence Extension Property in a special
case. All results are illustrated by examples.

Key words: congruence extension property, tolerance relation, variety of algebras, polynomial
conditions.

The problems of Congruence Extension Property, briefly (CEP) and of Principal
Congruence Extension Property, (PCEP), were investigated by A. Day, G. Gritzer
and H. Lakserin [6], [5], [7], [8]. A. Day proved in [5] thatin a variety of algebras,
conditions (CEP) and (PCEP) are equivalent. We shall proceed to generalize these
concepts for tolerances and characterize varieties satisfying such properties.

Let A = (4, F) be an algebra and T be a binary relation on the set A. The
relation T is called a tolerance on U if it is reflexive and symmetric and it has the
Substitution Property with respect to F, i.e. T is a subalgebra of the direct product
A x A. Thus every congruence on A is a tolerance on 4 but not vice versa (see
[3], [10]). Denote by LT() the set of all tolerances on U. Clearly LT () is a com-
plete lattice with respect to the set inclusion and the meet in LT() coincides with
the set-intersection, [2] (moreover, it is an algebraic lattice, see [3]). Denote by V 4
the join in LT(A). If a, b € A, denote by T',(a, b) the least tolerance on A collapsing
the pair {a, b); it is so called principal tolerance on A generated by a, b. If B c 4
and T e LT(N), denote by T | the restriction of T onto B:

Tlg=Tn(BxB).

If B is a subalgebra of A, T'e LT(A) and T’ € LT(B), then T'is called an extension
of T' provided T |5 =
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If p is an (n + m)-ary polynomial over ¥ and a,, ..., a,€ A, by an n-ary
algebraic function ¢ over U generated by p, a,, ..., a, is meant a mapping of A"
into A given by '

P(X1s oo Xp) = P(X15 ooy Xy, Qg5 ..y Gp)-

Let ¥ be a variety of algebras. By F,(x,, ..., x,) a free algebra of ¥~ generated by
the set of free generators {x,, ..., x,} will be denoted. If A = (4, F)and a, ..., a,€
€ A, denote by Gen (a,, ..., a;) a subalgebra of U generated by the set {a,, ..., a,}.

Definition. A class & of algebras is said to satisfy the (Principal) Tolerance
Extension Property if for each % € € and each subalgebra B of A every (principal)
tolerance on B is the restriction of a tolerance on .

We abbreviate the Principal Tolerance Extension Property by (PTEP) and
Tolerance Extension Property by (TEP). '

Lemma 1. Let A = (A, F) be an algebra and a;, b;e A for i =1, ...,n. The
JSollowing conditions are equivalent:

(l) (x, y>€ V_A{TA(aia bi=1,.., n};
(ii) there exists a 2n-ary algebraic function ¢ over WU with
X = (P(al» ceey a,,, bl’ ooy b"),
y = o(by, -"°’(bn9 ay;s ..., Gy).
For the proof, see e.g. [2].
Theorem 1. Let ¥~ be a variety of algebras. The following two conditions are
equivalent:
(1) ¥ satisfies (PTEP);

(2) for every (2 + n)-ary polynomial p over ¥ there exists a 6-ary polynomial q
over ¥~ such that

p(x’ B ) i:) = q(x’ Vs X5 )s p(x’ Ys i;)’ p(ys X, ;l))’
_ p()’» X i;) = q(, x, x, y, p(x, y, i:)’ p()’: X, i;))
Proof. Clearly ¥ satisfies (PTEP) if and only if for each A € ¥ and every sub-
-algebra B of U and each a, b € B we have - "
T4(a, b) |5 = Ts(a, b).

The inclusion T,(a, b)|z 2 Ts(a, b) is evident for every two U,, B, thus (PTEP) is
equivalent only to the converse inclussion. '
(1) = (2): Let A = F, . (x, ), 215 ...,2,) and p be a (2 + n)-ary polynomial
over ¥". Denote :
c = p(x,y, ;l)s - d = p(y, x, ;l)'

Let B = Gen(x, y, ¢, d). Then clearly {c, d) € T,(x, y) |5 and, by (1), also {c,d) €

8 , .

i



\

VARIETIES WITH TOLERANCE AND CONGRUENCE EXTENSION PROPERTY

€ Tg(x, y). Hence, by Lemma 1, ¢ = ¥(x, y), d = Y(y, x) for some bihary algebraic
function Y over B, i.e. there exists a 6-ary polynomial g over ¥ such that

'I’(&ls $2) = q(él) ¢, %, 0, ¢, d)’

c=qx 0 xy6d, d=q0 xxy,cd),

whence (2) is evident.
()= (1): Let A, B ¥, B be a subalgebra of A, x, ye B and

e, d)> € Ty(x, ) ls-

Then, by Lemma 1, ¢ = p(x, y, a,, ..., a,), d=p(y, x,a,, ...,a,) for some
a,, ..., a, € A and some polynomial p. By (2), ¢, d € Bimplies also g(x, y, x, y, ¢, d)€
€ B and q(y, x, x, y, ¢, d) € B, thus, also by Lemma 1,

{c,d)> € Tg(x, y)
proving (PTEP).

Example 1. The variety of semigroups satisfying the identiiy xzy = Xy satisfies
(PTEP). ' '

Proof. Let ¢ = p(x, y, z,), d = p(y, x, ;) for some (2 + n)-ary polynomial p.
Clearly it suffices only to investigate the case ¢ # d. Without the loss of generality,

' we can try only the case ¢ = xz;, d = yz, (for some i € {1, ..., n}). We can choose
a 6-ary polynomial ¢ as follows:

q(xl s X2, X35 X4, xs'» x6) = XyX¢g-
Clearly
q(x’ Yy X, ¥, €, d) = xyzl =XzZ;=
q(ys X, x’y; [ d) =yyzi =yzi d’
which implies (PTEP).

Example 2 The non-trivial variety of semilattices does not satisfy (PTEP).

Proof. Put n = 1, and p(x,, x,, X3) = x,; v x5. Then there evidently does no
exist a 6-ary semilattice polynomial g such that

XV z=q(x,y, %Y, XV z,yV 2),
yvz=4qy xxyxvzyv ).
Remark 1. Example 2 shows that there is a different situation as in the case of

congruences. Since every equationally complete variety of semigroups satisfies
(PCEP), see [5], it is not true for (PTEP).

Remark 2. A variety ¥ is called Principal Tolerance Trivial if for each U e ¥,
every T (a, b) is a congruence on ¥, i.e. for each a, be 4 we have T (a, b) =
= 6 ,(a, b). The well-known examples of such varieties are:
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(I) congruence-permutable varieties (see [10]),
(IT) the variety of distributive lattices (see [4] or [1]). For such varieties, we
obtain immediately from Theorem 1 and Day’s Theorem [5]:

Theorem 2. Let ¥ be a Principal Tolerance Trivial variety. The following conditions
are equivalent: :

(A) ¥ satisfies (CEP);

(B) it holds (2) of Theorem 1.

Theorem 2 enables us to characterize varieties of groups and quasigroups
satisfying (CEP).

Example 3. The variety of all abelian groups satisfies (CEP).
Proof. Let p be a (2 + n)-ary group polynomial. Thanks to the commutativity,
it has the cannonical form

. " — 8 ) e e
POy, Xgs s X24p) = X7 . X2 . X2 q o0 X3 4o
Put

" — e b -a -b
q(¥y, X2, X3, Xg, X5, Xg) = X7 .X3.X3 . X4 .Xs.

Evidently, (2) of Theorem 1 is satisfied.

It was proved in [7] (Theorem 6.1) that for congruence distributive varieties
generated by a finite algebra, (CEP) is equivalent to the existence of Universal
Restricted Congruence Scheme. Our Theorem 2 enables us to give a similar con-
dition in the case of Principal Tolerance Trivial (e.g. congruence permutable)
varieties: ' .

Theorem 3. Let ¥~ be a Principal Tolerance Trivial variety. The following two
conditions are equivalent:

(A) ¥ satisfies (CEP);

(B) (¢, d> € @ ((x, y) if and only if there exists a 6-ary polynomial q over ¥~ such

that ) :
c= q(X, Vs X, )5 €y d)’
d=q0, x, x, ¥, cd). .

Proof. (A) = (B): If¥ satisfies (CEP), it satisfies also (PTEP) since itis Principal
Tolerance Trivial. Let {c,d) € @ ,(x, y) = T,(x,y). By Lemma 1, there exists
a (2 + n)-ary polynomial p with ¢ = p(x, y, z), d = p(», x, Z;). Theorem 2 implies
(B) immediately.

s «(B) = (A) is clear by Corollary 1 in [5].

Example 4. The variety 2 of all distributive lattices satisfies (CEP) (see also

[4], [10])
~ Proof. It is well-known that {¢, d) € O ,(x, y) for W e P if and only if
™) . evd=[(xv )V (cA d)]A (cv d)

cnd=[(xA YV (cA d)]A (cv d).
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Since {c,d> € @4(x,y) if and only if (cA d,cv d)e O ,(x,y) and O ,(x,y) =
= O4(xA y, xv ), it suffices to investigate only the case d £ ¢, y £ x. In this
case, the foregoing identities have a form

c=(xv dAhc,
d=(yv d)A ¢,

which is the form desired in Theorem 3 (2 is Principal Tolerance Trivial, see
Remark 2).

Remark 3. Contrary to the case of congruences, (PTEP) and (TEP) are not
equivalent on varieties:

The variety 9 of distributive lattices satisfies (PTEP) since itis Principal Tolerance
Trivial and it satisfies (CEP), however, it does not satisfy (TEP) sin¢e F,(x, y) €2
has not this property (see the Proposition in [1]).

Therefore, these two conditions will be investigated separately and we give
a characterization of varieties satisfying the equivalence (PTEP) <> (TEP).

Lemma 2. Let B = (B, F) be a subalgebra of N. The following two conditions
are equivalent: ' .

(@) For every 2n-ary algebraic function ¢ over W and for each x, ..., x,,
Vi, eoes Yo € B with

O(Xyy ooy Xy Vis ooy YV E By @15 oovs Yuy X15 -oer X,) € B,
there exists a 2n-ary algebraic function Y over B such that
o(x;, ?.') = W(;i’ Yo, ‘P(?u ;i) = ¥(¥is ;i);
(b) For each x1, ..., Xp, V1, ..., Vs € B we have
Ve{Ts(xi, y)si=1, ...,n} = (V{Tu(xi, p);i =1, ...,n}) 5.

Proof. (a) = (b): The inclusion < in (b) is evident in any case. Prove the
converse inclusion. Let

6 y> e(Va{Tu(xi, yi)ii =1, ..., n}) [5.
By Lemma 1, there exists a 2n-ary algebraic function ¢ over U with
x = @(%;, ¥, € B, y = oy, X) € B. |
By (a), there exists a 2n-ary algebraic function ¥ over B with
o eG V) = VG V), 00 X) = Y %) |

and, by Lemma 1, )
<x’ y> € VB{TB(xl’ yi); i=1,.., n}‘
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(b) = (a): Let ¢ and x,, ..., X,, V;, ..., V, b€ as in (a). By Lemma 1, (x, y> €
eEVu{T(xi,y)58 =1, ees n}) | for
X = (P(xlv vy Xy Vi1 °"syn)’y = (P(yl’ cees Vs Xps eoes n)'
By (b), {x, »> € V{Ts(x;, y);i =1, ...,n} and Lemma 1 yields (a).
Lemma 3. Let € be a class of algebras closed under the formation of subalgebras,
The following conditions are equivalent:
(i) € satisfies (TEP);

(ii) for each W € € and every subalgebra B of W it is valid (b) of Lemma 2.
Proof. () = (ii): If € satisfies (TEP), then clearly

Vu{Tu(x, y);i=1,...,n}

is an extension of

V{Ts(x;, y); i = 1, .., n} for x;,y,€B

* and (b) of Lemma 2 is evident.

(ii) = (i): Let 7"6 LT(B). By Theorem 14 in [3],
| T = Vu{Tsc, d);<c,d> e T}

Put T* =V ,{T,(c, d); {c, d)> € T} and prove that T* is an extension of T. Clearly
T* |z 2 T. Conversely, let {x, y> € T*|z. By Theorem 2 in [3], there exists an
n-ary polynomial p over U such that

x=p(xg, s %)y ¥ =PWas ey Yads-

where {x;, y;> € T,(c;, d;) for some {c;,d;> € T. Combining it with Lemma 1,
X = @(Cyy iuey Cyy dy, ..., dy),
y =0, ..,d,c;..., )

for some 2n-ary algebraic function ¢ over . By (ii) and Lemma 2,
X =yY(Cys -5 Car dyy ons dy),
y=yY(d,..,dy,C1,..,Co)s

for some Zn-éry algebraic function ¥ over B, thus, by Lemma 1,

{x,y> € Vp{Th(c;, d); {c;,dyeTfori=1,..,n}cT
and T* |, = Tis proved.

Theorem 4. Let ¥~ be a variety of algebras. The following two conditions are
equivalent:
(3) ¥ satisfies (TEP),

10
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(4) for every (2n + k)-ary polynomial p over ¥~ there exists a (4n + 2)-ary
polynomial q over ¥~ such that

pP(X, ¥i, Z)) = qXi, ¥ir Xi» ¥io P(X47Y 00 Z)), (Vi X z))), ‘
(¥, X, ;j) = q(¥i, Xy Xi5 ¥ P(X;5 Vi ;J)’ (i, X, ;]))

The proof is analogous to that of Theorem 1 only the equality (b) of Lemma 2
is used instead of the equality T (a, b) |5 = Tg(a, b) and A, B are chosen as follows:

A = F2n+k(xl, ey Xy Vi ooy Vns 21y ooy zk)’
% = Gen(xl’ sy xn’ yl 9 *e ym p(;l’ _iia ;j)’ P(—ii’ ;t’ ;j))
Remark 4. Although it looks rather hard to satisfy (4) of Theorem 4, it is actually

fulfilled e.g. in every congruence permutable variety satisfying (CEP) as it follows
from the Theorem of Werner [10].

Example 5. Every variety of unary algebras satisfies (TEP).
It follows directly from Theorem 4. As a consequence of Theorems 1 and 4,
we infer a characterization of varieties satisfying (PTEP) <> (TEP):

Theorem 5. For a variety ¥, the following conditions are equivalent:

(A) (PTEP) <> (TEP) in¥";

(B) (2) implies (4) in¥".

Example 6. In every variety of commutatwe Semigroups, the condttions (PTEP)

and (TEP) are equivalent.
Proof. Let p be a (2n + k)-ary semigroup polynomial and

a= P(x19 cers Xps V1o coes Vs i})y
b= p(yls cers Yms Xg5 oo Xy i[)-
Thanks to the commutativity, we can express it in the form

_ a=x.z, b=y.z

where ‘
x=x{.xroyft Lyl

y=yt. e xf L x

and z is a product of all other occuring variables which has the same value in these
both formulas. If ¥~ satisfies (PTEP), there exists a 6-ary polynomial g such that

a=q(xXy%y%x.2,y.2),
b=q0,x,x,y,x.2,¥.2),

i.e., by replacing x, y, z and a, b, we obtain cdsili' (4) and Theorem 5 yields the
statement. :
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