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CONVEX LINES IN MEDIAN GROUPS

MiLaAN KOLIBIAR

Dedicated to Professor M. Novotny on the occasion of his seventieth birthday

ABSTRACT. There is proved that a convex maximal line in a median group G,
containing 0, is a direct factor of G.

1. INTRODUCTION

The present paper is related to the paper [5]. The aim of it is to extend the
main result in [5] to a class of all median groups.

A basic notion in both papers is that of median algebra. By a median algebra
is meant an algebra with a single ternary operation satisfying the identities

(1) (a’ a, b) =1,

(2) ((a,b,¢),d,c)=((d,e,b),a,c).
Such algebras were investigated under various names by several authors. A survey
of results is e.g. in [1]. Let L = (L;A,V) be a distributive lattice. Consider the
operation

(3) (a,b,e)=(avVHA(bVe)A(cVa).
M(L) = (L; (A, V)) is a median algebra. According to [7] each median algebra is
isomorphic to a subalgebra of an algebra M (L).

In an l-group G = (G;+,—,0,(,,)) the operations (3) and + are related by the
identity

D u+(a,be)+v=(ut+a+v, u+b+v, ut+c+wv).

Definition. By a median group (m. group) there is meant an algebra (G; 4, —, 0,
(,,)) where (G;+,—,0) is a group, (G;(,,)) is a median algebra and the identity
(4) in G holds.

If G is an [-group then the m. group (G;+,—,0,(,,)) where the ternary oper-
ation is given by (3), is said to be associated with (. There are median groups
which are not associated with any [~group. Examples of such m. groups are in [5].
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68 MILAN KOLIBIAR
2. SOME PROPERTIES OF MEDIAN ALGEBRAS AND MEDIAN GROUPS

Let A = (4;(,,)) be a median algebra. If a,b,¢ € A and (a,b,¢) = b we say
that b is between @ and ¢ (in symbols abe). If a1, as,...,a, € A and a;a;a; holds
for 1 £i<j <k < n wedenote it by ajas...a,. A subset K of A is said to be
convex if a,6 € K, u € A and aub imply u € K.

Given an element u € A, then the rule # Ay = (2, u,y) gives an idempotent,
commutative and associative operation in A and (A;A) is a semilattice with the
least element u. In what follows we shall use such operation in median groups
setting u = 0. Then # £ y in the semilattice (G; A) iff Ozy. (a,b) will denote the
set {# € A : axb}. The algebra ((a,b); A, V), where 2 Ay = (z,a,y), eVy = (z,b,y)
is a distributive lattice with the least and the greatest elements a, b, respectively
[7]. Call a mapping f : A — B between two median algebras A, B betweenness
preserving if abe implies (fa)(fb)(fe). A subset L of a median algebra A is called
a line if there 1s a betweenness preserving injective mapping f from a chain C' to

A such that L ={fa:a € c}.

2.1[3, Proposition 2]. A subset L of a median algebra with card L # 4 is a line
iff for any a,b,c € L one of the relations abe, bea, ach holds. Obviously a subset of
a line is a line. If a is an element of a line I such that for each b, ¢ € L either abe
or acb holds, we say that a is an end element of L.

2.2. Let A be a line in a median algebra and 0,a € A, a # 0. Denote A’ = {x €
A 20a}, Ay = A— A’ Then A = A’UA, and ¢ € A’ together with y € A, imply
z0y. Routine proof omitted.

2.3. Definition [4]. A subset C' of a median algebra is called a Cebysev subset
if for each a € A an element a¢c € C exists such that aacx for any z € C'.

Obviously a Cebysev set is a convex subset of A.

2.4 [5; 2.7]. Any convex maximal line in a median algebra is a Cebysev subset.
Some elementary properties of median algebras and median groups are in [5].
Let us recall some of them.
(a,b,¢) = (bya,c) = (b, e, a),
((a,b,¢),d,e) = ((a,d,e),b,(c, d,e)),
abe 1mplies cba,
abec and buc imply abuc,
abec and acb imply b=c,
aub, buc and  cua hold iff w=(a,b, c).
G will denote an m. group.
These properties as well as the lemmas 2.5, 2.6 and 2.7 below will be used freely
in what follows.
The following lemma is obvious.

2.5. Lemma. Let a,b,c,u be elements of an m. group then abe implies (a+u)(b+

w)(c+u), (u+ a)(u+d)(u+e).
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2.6. Lemma. Let a,b,u € G. If (a,b) is a line then (a+u,b+u) and (u+a,u+b)
are lines too.

Proof. The lemma is an immediate corollary of 2.1 and 2.5. |

The following assertion is easy to proove.

2.7. Let a,b,c¢,d be elements of a line and let abe, bed and b # ¢ hold. Then abed
holds.

3. DIRECT FACTORS

In this paragraph GG denotes a median group.

3.1. We say that a subset A of G forms a direct factor of G whenever a direct
product decomposition f : G — B x (' exists such that A = f=1({(b,0) : b € B}).

3.2. Lemma [65 3.9]. A subset A in G forms a direct factor of G if and only if
it is a Cebysev subset in M((G) and forms a subgroup of the group (G;+, —,0).

3.3. Theorem. Any convex maximal line in GG, containing 0, is a direct factor

of (5.

In view of 3.2 and 2.4 it suffices to prove the following lemma.

3.4. Lemma. Any convex maximalline L in M (G) forms a subgroup of the group

(G;+,—,0) whenever 0 € L.

The proof of lemma 3.4 is divided into a series of lemmas and ends in 3.15.

3.5. Remark. A short proof of lemma 3.4 has been given (not yet published) by
T. Marcisova.

3.6. Let a € GG and let (0,a) be a line. Then one of the cases
(—a)0a, O0(—a)a, Oa(—a)

occurs.

Proof. Denote u := (—a,0,a). From Ou(—a) it follows that a(a + «)0 and, since
Oua and (0, a) is a line, one of the cases
a) Ou(a + u)a, b)0(a+u)ua

occurs. In the case a) we get (—a)(—a + u)u, which together with a(a + w)u and
au(—a) yields a(a +v)u(—a—+u)(—a). From (a4 u)u(—a+ u) it follows a0(—a). In
the case b) we get (—u)a0(a—u) and, according to aul, (—u)aul(a—u). Since (0, a)
is a line, (—u, a—wu) is a line, too, (see 2.6) and, according to (—u,u) C (—u,a—u),
(u, —u) is a line.

We shall show that

(i) a,—a € (u, —u).
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First from the above relation we get (—u)au. From 0(a+u)a we get u(a+2u)(a+u)
which together with au(a 4+ u) yields au(a + 2u), hence (add —a on the left and
—u on the right side) (—u)(—a)u. Hence (i) holds. Since (u,—u) is a line, using
2.1 we get that one of the following cases occurs.

b1) ua(—a)(—u), b2) u(—a)a(—u).
In the case bl) we get wa(—a) and, since au(—a), u = a hence (0,a,—a) = a,
i.e. 0a(—a). In the case b2) u(—a)a and au(—a) yield u = —a hence 0(—a)a. This
proves the assertion 3.6. |

3.7. Let (0,a), (0,b) be lines and neither 0ab nor 0ba hold. Then a Ab = 0 (i.e.
a0b).

Proof. Let a Ab=(a,0,b) = u. According to 3.6 there occurs one of the cases
1. a0(—a), 2. Oa(—a), 3. 0(—a)a
and one of the cases
1. b0(=b), 2°. 0b(=b), 3'. 0(=0b)b.
Case (1.1’). From the assumptions we get au0(—a) hence (2a)(a + u)a0. From
this we get (a 4+ u)au0 and a(a — «)0. Similarly b(b — u)0.
Denote @' =a — u, ¥/ =b—u. Then o’ AV = (a —u,0,b—u) = (a,u,b) —u =
u—u=0,0a’a and 0b'b. Since Oua and Qub, there hold

either a) 0a’u or b) wua'a

and

either a’) 0b'u or b’) wub’d.

a) and a’) yield (since (0, u) is a line) 0a’d’ or 00'a’ hence @/ = a’ A =0ie.a =u
or Y = 01i.e. b = u and we get that 0ab or 0ba - a contradiction. The case a) and
b’) yields 0a’d’ - a contradiction as above. The case b) and a') is symmetric. In
the case b) and b’) we get 0 = a’ Ab (since u £ a’ Ca,u LV <band aAb=u).
Case (1.3"). Again denote u = (0, a,b). There are two possibilities:
a)  0(=b)u, b) u(—b)b.
The case a) yields 0(—b)ua and
(1) (a)(~b - a)(~a)0.
From (—a)0a and 0(—b)a we get (—a)0(—b)a. This together with (1) yields (—a)
(=b — a)(u — a)0(—b)a. From this we get successively

0(=b)ua(—b + a)(2a), bO(b+ u)(b+ a)a(b+ 2a).
From this we get 60a hence u = (a,0,b) = 0. Since 0(—b)u, we get 0(—b)0 hence
b =0 - a contradiction.

In the case b) we get 0(—b)b, u(—b)b and Oub. This yields Ou(—b) hence b(u+5)0
so that

(*) w, u+be(0,b).
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a0(—a) and au0 yield au0(—a). From au0 we get 0(u — a)(—a). From this we get
successively aul(u—a)(—a), (—u+a)0(—u)(—a)(—u—a), (—u+2u)a(—u+a)0(—u).

From au0 and a0(—u) we get
(+) aud(—u).

According to () there are two cases possible
bl) O(u+ b)ub, b2) Ou(u-+b)b
Case bl) yields

(1) (—uw)b0(—a + b)
From bu0 and u(—b)b we get
(2) b(—b)u0.

But from (1) (—u)b0. This together with (1) yields (—u)b(—b)u0. From this we get
(—uw)u0. But according to (4) u0(—u) hence u = 0.

In the case b2) from Ou(u + b)b it follows (—u)0b(—u + b). From this we get
successively (—u)Oub(—u + b), (—2u)0(—u + b) and Ou(2u)b. Combining the last
two relations we get (—2u)0ub(—u+0b). From aub and u(2u)b we get au(2u). Hence
the elements 0, u, a 2u fulfil the conditions in the case (1.1). 0 = a (2u) = a b = u.
This completes the case (1.3').

In the case (1.27) 0 £ b £ —b hence u = a Ab < a A (=b) = v so that
0 € ugv<a, Quv(—b) and Oub(—b).

(0,0) is a line hence (—=b,0) = —b + (0,b) is a line. Since b,v € (0,—b), uvb or
bu(—b) hold. The second case yields Oubv(—b) hence 0 £ b < v. Since u S v < a,
we get 0 £ b < aie. Oba - a contradiction. Hence uvb holds. Then v <a and v < b
yield v § a Ab = u. Since u < v, we get 4 = v. The elements 0, u, a, —b fulfil the
conditions of the case (1.3'), hence u=0.

Case (3.3"). Recall that u = (0, a,b), Oua, Oub hence 0(u—a)(—a), 0(u—b)(—=b).
Since (0,a), (0,b) are lines and u belongs to both (0,a) and (0,5) the following

cases are possible.

1. Ou(u—a)(—a)a, Ou(u—>b)(—b)b,
2. Ou(u—a)(—a)a, O(u—b)(—b)b,

3. Ou(u—a)(—a)a, O(u—b)(—b)ub,
4. 0(u— a)u(—a)a, Ou(u— b)(—b)b,
5. 0(u— a)u(—a)a, O0(u— b)u(—b)b,
6. O(u— a)u(—a)a, O0(u—b)(=b)ub,
7. 0(u—a)(—a)ua, Ou(u—b)(—b)b,
8. O0(u—a)(—a)ua, O0(u—b)u(—b)b,
9. 0(u—a)(—a)ua, O0(u—b)(—b)ub.

Because of the symmetry it suffices to settle the cases 1,2,3,5,6,9.
Case 1. From the suppositions we get (u—a,0,u—b) = u, (—a, —u, —b) = —u+
(u—a,0,u—b)=0,u=(0,—a,—b) = ((—u,—a,—b),—a,—b) = (—u,—a,—b) = 0.
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In the case 2 (0,—a, —b) = u. But O(u — b)u(u — @) hence (—u)(—b)0(—a) so
that © = (0, —a, —b) = 0.

In the case 3 we have Ou(u—a), 0(u —b)u hence (v — a)u(u—0b) and (—a)0(=b).
From 0(—b)u and Ou(—a) we get 0(—b)(—a). Combining this with the above rela-
tion we get b =0 € (0,a) - a contradiction.

Case 5. Let e.g. 0(u — b)(u — a)a (the second possibility is symmetric to this).
Then from u(u — a)(u — b) we get 0(—a)(—b) hence u = (0,—a, —b) = —a. Then
from 0(u — b)u we get O(u — b)(—a) so that a(—b)0 and —a = u = (a,0,—b) = =b
hence a = b - a contradiction.

In the case 6 we have (u—b)(—b)u hence (add —u on the left and b on the right
side)

(1) 0(—u)b.

Next (u — a)u(—a) gives (—a)0(—u — a) and Oa(—u). This together with (1)
gives Oab - a contradiction.

Case 9. Let e.g. 0(—a)(—b) (the case 0(=b)(—a) is symmetric). Then u(u —

a)(u — b) which together with u(u — 6)0 gives u(u — a)(u — )0. Combining these
relations with au(—a)(u—a)0 we get au(—b)(—a)(u—a)(u—>5)0. From the relation
au(—a)(u—a) we get (2a)(u+a)0u, (2a)(u+a)0(u—>b)u. From the last relation we
get au(u—b—a). But from 0(u—b)(u—a) we get a (u—b+a)u, which together with
the above relation gives a(u—b+a)u(u—b—a). From this we get (—b+a)0(—b—a)
hence ab(—a) so that b € (a,—a) C (0,a) - a contradiction.

This settles the case (3.3).

Case (2.2"). We have 0 Su < a £ —a, 0 S u £ b < —b. We claim that —a ¢
(0, —b). Suppose —a € (0,—b). Then Oa(—a)(—b). Since b € (0,—b) and 0ba do
not hold the possibility 0ab(—b) remains which is a contradiction. Symmetrically,
—b ¢ (0, —a). Using the consideration in the case (3,3') for the intervals (0, —a)
and (0, —b) we get (—a) A (=b) = 0 hence a Ab = 0.

In the remaining case (2,3) we have O0a(—a) and 0(—b)b. —a € (0,b) would
give Oab - a contradiction. Hence —a ¢ (0,5). Suppose b € (0,—a) i.e. 0b(—a).
Since a € (0, —a) one of the relations Oab and 0ba(—a) would hold which is a
contradiction. Hence b ¢ (0, —a). The elements b3 = b and a3 = —a fulfil the
conditions of the case (3,3') so that ay A by = 0 hence also a A b= 0.

Summarizing the results, we proved the assertion 3.7 in the cases (1,1'), (1, 3),
(1,21, (3,3, (2,2) and (2, 3). Because of the symmetry this settles also the cases
(3,11, (2,1') and (3,2’). This completes the proof. d

3.8. Let A and B be lines with the end element 0. If neither A C B nor B C A
holds then a Ab =0 for any a € A, b € B.

Proof. The assertion is a corollary of 3.7. |

3.9. Let A be a convex maximal line in G and 0,¢ € A. Then —a ¢ A or a0(—a).

Proof. According to 3.6 one of the following three cases occurs.
1) 0(—a)a, 2) 0a(—a), 3)ald(—a).
Case 1) yields —a € A.
Case 2). We use the notations used in 2.2. There are two possibilities:
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2a) Ay C (0,—a), 2b) A, —(0,a) ¢ 0.

Case 2a). Let b € A’. Set t := (b, a, —a). There are two possibilities:

2al) b0, 2a2) Ota.

In the case 2al) b0a and 640 imply ¢0a. But at(—a) and Oa(—a) yield Oat. Hence
a=0and —a € A.

In the case 2a2) Ota and Oa(—a) yield ta(—a). Since at(—a), we get t = a, hence
(b,a,—a) = a so that ba(—a) and b0a(—a). From this it follows that A’ U (0, —a)
is a line. Combining A = A’ U A, and the supposition 2a) we get A C A’ U (0, —a).
This and the maximality of A yields A = A’ U (0, —a), hence —a € A.

Case 2b). Let ¢ € Ay — (0,—a). If (0,—a) C Ay then —a € A. If (0, —a) ¢ A,
then, according to 3.8, ¢c0(—a) holds. Since ¢ € A4, Oca or Oac holds. The first
relation together with Oa(—a) yields Oc(—a) i.e. ¢ € (0,—a) - a contradiction.
Summarizing the above procedure we get that either —a € A or a0(—a) hold. This
completes the proof of 3.9. |

3.10. Let A be a convex maximal linein G and 0,a € A, —a € A. Then (—a)4 = 0.

Proof. Denote (—a)s =t. There are three cases possible:

1) Oat, 2) Ota, 3)10a.

In the case 1) the relations Oat and (—a)t0 yield (—a)a0. But by 3.9 a0(—a), hence
a =0 and —a € A - a contradiction.

In the case 2) 0ta and a0(—a) (see 3.9) yield t0(—a). But (—a)t0 according to the
definition of ¢. Hence ¢ = 0.

Case 3). According to 3.8 there are three possibilities (we use the notation from
2.2): 3a) (0,—a) C A', 3b) A" C (0,—a), 3c) x0y for each # € A" and y €
(0, —a).

In the case 3a) —a € A - a contradiction.

Case 3b). Let b € A,. Then either 0ba or 0ab holds. In the first case (—a)ta,
t0a and 0ba yield (—a)t0ba, hence (—a)0b. In the second case t0a and 0ab yield t0b
(see 2.7). This together with (—a)tb yield (—a)0b. Hence for any b € A, (—a)0b
holds. This follows that (—a,0)U A, is a line. Using the supposition A’ C (0,a) we
get A C (—a,0)U A, so that A = (—a,0) U Ag, hence —a € A - a contradiction.

In the case 3c) we get t0(—a) (¢t € A'!). This and (—a)t0 yield ¢ = 0. This
completes the proof of 3.10. |

3.11. Let A be a convex maximal line in G and 0,a € A, a # 0. Then b € A exists
such that b # 0 and b0a.

Proof. If such an element did not exist, then 0 would be an end element of A.
According to 3.10 (—a)0¢t for any ¢ € A, hence (—a,0) U A would be a line, so that
(—a,0)UA = A and —a € A - a contradiction. d

3.12. If A is a convex maximal line in G and 0 € A then a € A implies —a € A.

Proof. Assume, on the contrary, that there is a € A such that —a € A. According
to 3.11 b € A exists such that 60a and b # 0. Then 0(—b)(a —b) and (0,a—b) is a

line (see 2.5). According to 3.7 one of the following three cases occurs.



74 MILAN KOLIBIAR

1) 0Oa(a—b), 2)0(a—b)a, 3)al(a—"b).

In the case 1) @ € (0,a — b) and, since b0a is a line, there are two possibilities:

la) Oa(—=b)(a — b), 1b) 0(=b)a(a — b).

The case la) yields (we add —a on the left and & on the right side) b(—a)0, hence
—a € A - a contradiction.

In the case 1b) we get 60(a+b)a and (adding —a on the left) (—a)b0. But (—a)4 =0
(see 3.10) hence (—a)0b and b = 0 - a contradiction.

In the case 2) we get (—a)(—5)0. According to 3.9 (—a)0a. The two last relations
yield (=b6)0a. On the other hand from a0b we get (a — b)(—5)0. This together with
0(a—b)a yields a(—b6)0. Combining this with (—b6)0a we get b = 0 - a contradiction.

In the case 3), using the relation 0(—b)(a — b) which follows from b0a, we get
a0(—b)(a — b). From this we get b(—a + b)(—a)0, hence b(—a)0 and —a € 4 - a
contradiction. This completes the proof of 3.12. |

3.13. Let A be a convex maximalline in G and 0 € A. Then @ € A implies 2a € A.

Proof. There are three possibilities:
1) 0a(—a), 2) 0(—a)a, 3) a0(—a).

The possibility 1) yields a(2a)0, hence 2a € A. In the case 2) we get (—a)(—2a)0,
hence —2a € A and 2a € A according to 3.12. Case 3). The interval (—a,a)
is a line, hence (0,2a) is a line, too (see 2.5). According to 3.8 there are three
possibilities: 3a) 4, C (0,2a), 3b) (0,2a) C Ay, 3c) 20y for each z € A, and
y € (0,2a). In the case 3a) we get that A’ U (0, 2a) is a convex line containing A,
hence A = A" U (0,2a) so that 2a € A. 3b) yields 2a € A immediately. Case 3c).
From a0(—a) we get 0a(2a) hence a € (0,2a) and a € A4 so that ala i.e. a =0
and trivially 2a € A. a

3.14. Let A be a convex maximal line in G and 0 € A. Then a,b € A imply
a+be A

Proof. There are three possibilities:
1) Oab, 2) 0ba, 3) alb.
In the case 1) we get b(a+b)(2b), b(b+ a)(2b). Since 2b € A, a+b and b+ a belong
to A. The case 2) is similar. In the case 3) we get (=b)(—a — b)(—b). Since —a, —b
belong to A (see 3.12), —(a+b) = —a—b € A, hence a+b € A according to 3.12.
|

3.15. From 3.12 and 3.14 we get that a convex maximal line in GG, containing 0,
forms a subgroup of the group (G;+,0,—) which completes the proof of lemma
3.4 and the proof of theorem 3.3.
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