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SPRAYS AND HOMOGENEOUS CONNECTIONS ON R x TM

ALEXANDR VONDRA

ABSTRACT. The homogeneity properties of two different families of geometric ob-
jects playing a crutial role in the non-autonomous first-order dynamics - semisprays
and dynamical connections on R X TM - are studied. A natural correspondence
between sprays and a special class of homogeneous connections is presented.

1. INTRODUCTION

The importance of the homogeneity of second-order differential equation fields
(briefly semisprays) and of related connections on T'M is well known (e.g. [7], [16],
[3], [10], [9], [15], [1], [4] etc.). Namely, if we take an arbitrary semispray ¢ on T'M,
then I' = —0¢J (8, is Lie derivative, J is the canonical almost tangent structure
on TM (see (5)) is a connection in the sense of Grifone . However, its paths are
not generally just the paths of {, because { need not be the associated semispray
to I'.' A homogeneous semispray is called a spray and then I' = —0;J is the
unique homogeneous connection without torsion, now with the same paths [3],[4].
The homogeneity requirement on a regular lagrangian guarantees the associated
Lagrange vector field to be a spray, which consequently leads to the geometrical
characterization of the related regular autonomous dynamics. These considerations
are naturally extended to T*M = J¥(R x M, 7, R).

In addition, a canonical connection whose paths are the solutions of the Euler-
Lagrange equations for only regular lagrangian are constructed in [4].

The situation on R x T'M was studied by de Ledén and Rodrigues. They have
shown in [6] that for any semispray on R x T'M there is the so-called dynamical
connection with the same paths (related papers are [2], [5]). However, the role of
the homogeneity was not yet (as far as we know) studied.

Our approach to the regular (generally higher-order) dynamics on an arbitrary
fibred manifold with a one-dimensional base developed in [18] and [17] allows us
to present the following considerations. Remark that some of them are closely
related to the geometrical structures on R x T'M, which admit the possibility of
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their natural generalization to R x T* M but not to an arbitrary first prolongation
J17 of  with a one-dimensional base X. On the opposite, many of the used notions
are the special cases of those defined on an arbitrary manifold (e.g. [12], [14], [11],
[13)).

In Sec. 2 we give a survey of basic structures and notions related to the geometry
of R x TM (see [6], [2], [8]) within the context of [18], [17]. The main results can
be found in Sec. 3, where we study the notions like a spray, tension, strong torsion
and the relation sprays «—— homogeneous connections. Finally we mention the
importance of the homogeneity for regular lagrangians.

We use the following standard notation throughout the work : (¥, 7, X) is a
fibred manifold with the total space Y and the base X, F(Y) denotes the set of
locally defined real functions on Y, Sy (w) is the set of smooth local sections of #
defined on U | A"Y is the so-called r—fold alternating product of 7 and [, ] means
the Frolicher-Nijenhuis bracket of the tangent valued forms.

All manifolds and mappings are supposed smooth and the summation conven-
tion is used as far as possible.

2. GEOMETRICAL STRUCTURES ON R x T M

In what follows, we consider the trivial bundle (Rx M, 7, R) with # = prq, where
M is an arbitrary m—dimensional manifold. We suppose ¢ to be the canonical global
coordinate on R ; ¢ = (¢,¢%) is then a fibre chart for any local coordinate system
v=1(¢7),1 <o <m,on M .Thus asection v € Sy(x) has a form

(1) (1) = (¢, ()
where ¢ : U — M is a differentiable curve. The first jet prolongation J'm of =
can be naturally identified with R x T'M and the fibration

71,0 RxTM — Rx M
is obviously a vector bundle. The local coordinates on J! 7 associated to ¢ = (¢, ¢%)
on V C Rx M are

1/)1 = (taqUaQEjl))'
If ¥ = (tj)‘) are some other coordinates on V C R x M and VNV # (), then
(2) ot q7) = (7))
and consequently
0,

3) T = 5,790
on wié(V NV)C Rx TM . Due to the product structure V;, = R x TTM and
Vo =< 6/6(]&) > . From (2) and (3) it holds

o _op 9 9Ty 0
dq°  9q° ag* dq° 866\1)
o _ op 9
P4t 007 0Ty
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and
o aqa —A\
dq” = o7 dq
dq; dq°
o _ (1) -x 9
dqfyy = a7 dg” + @dq(l)

on T(R x TM) and T*(R x T M) respectively.
A tangent valued r—form on J'm is (in accordance with [12]) a section of the
bundle
TJ'r @ AT J'r — J'x .

Tangent valued 1-forms, called also affinors, are tensors of type (1,1) on Jlw
i.e. endomorphisms on T'J'7 ; especially 71 o—vertical affinors are called soldering
forms. They are locally expressed by

P :
(4) p=¢" 70— @dt+ ] @ d¢’

0

g

94 94
with ¢7, 7 € F(J'7) . In terms of natural bundles and operators it can be shown
[8] that there is an essential subset (more precisely a linear subspace) of the so-

called natural affinors. Any such natural affinor has a form

OzITM—l—ﬁJ—l—’yIR—I—(SC@dt ,

where 5 5
I = — ®dq° —— ®dq/.
™ 90 ®dq” + aq&) @ dqyy
and
(5) J = — @ dq”
941

are the unique two natural affinors on TM ;

s 0

is the Liouville vector field on TM and «,3,v,8 € F(R) . The most important
natural soldering form is the endomorphism

S=J-C@dt

locally given by

(6) S = @w’

04l
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where
(7) w? =dq” — qfyy di
are the well-known canonical contact forms. Obviously rank S = dimV;, , = m

and S? = 0 . If we put
— 0
= — dt
J S+(C+6t)® ;

it is easy to see that R x T'M is endowed with a particular case of the so-called

almost stable tangent structure, which means a triple (J, %, dt) satisfying

iadtzl,jzzg(}bdt, rank J =m+1.

& ot

This structure may be used for example to an intrinsic description of the inverse
problem (see [5]).
A distinguished vector field on J'7 = R x TM is a (global) semispray which
can be characterized by means of any of the following conditions:
) 0 0 0
C=g tay g g
ot 0q 8(](1)

in any fibre coordinates, where C(Ul) € F(Jin);
(ii)
TmiooC = p1o
where p1 o : J'm — T(Rx M) is a canonical injective mapping (in fact, a vector
field along 71 o, called total derivative with respect to t), defined for any given 1-jet
Jty e Jin by
d
poin = { Zat+af
(iii)
d

prooa = ——(mpoa)

ds

for any integral curve « of ( ;
(iv)
S¢C=0ANJ(=0C;

)
W) =0 A di() =1

for w? given by (7) and 1 < ¢ < m.
A section v € Sy (w) given by (1) is called a path of the semispray ¢ if and only
if any of the following conditions holds :
(i) p ]
c? c
L — (e, —
dt? e dt)
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on U for any fibre coordinates, 1 <o < m ;
(ii) J'v is an integral curve of ¢ ;
(iii) Jlv is an integral mapping of the so-called (one-dimensional) semispray
distribution A}[(], generated by ( ;
(iv)
Codly = prioliy

on U | where psq1 : J?m = RxT?M — T(R x T'M) is analogously to p; g
defined by

d
pai(Jiv) = {_Jl 87}
t dS i+ o

The one-dimensional semispray distribution A}[¢] on R x TM, spanned by (,
can be naturally identified with the connection I of order 2 on w by

(8) ng) = C(U1) :
Any such a connection is a section I' : J'7r — J?r locally given by
(ta qU’ qzjl)a QEIQ)) o F = (ta qU’ q&)’ ng))

for F&) € F(J'm) , characterized among others uniquely by its horizontal form

0 0 0
hl“ = (— —|—q€1) —o_ —|— ng) —o_) ® dt .
ot 0q 8(](1)
The path (or integral section) of T' is a section y € Sy () such that
J?y=ToJly

on U . Tt is easy to see that I' and ¢ identified by (8) (¢ is called associated to T')
have the same paths and

hr = (®dt .
Furthermore, there 1s also another kind of connections closely related to the given
semispray.
Let I'g be a connection on 7 o , i.e. a section
'y : Jir — Jlﬂ'lyo
locally given by
(ta qU’ qzjl)a Q€170)a q&vo))‘) o I‘d = (ta qU’ qzjl)a Faa Fi) )

where I'7,T'¢ € F(J!7). The horizontal form of I'y is

_ a o a a o o A
(9) hr, = (6t+r 507 )@dt+ 6q0®dq + T3 ® dq

a0 o4
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and the (m 4 1)-dimensional 7 o-horizontal subbundle Im hr, =: Hr, is locally
generated by the vector fields

0 0 0 0

_ + FU ’ - + FU

ot g7y, O * dqf,

or equivalently by the forms
WUl = dglyy—T7 dt =T dg* .

A section v € Sy () is called a (dynamical) path of Ty if Jlv is horizontal with
respect to I'g, which means
T(J;)C Hr, .

An endomorphism F on T'J1m = Rx T'M is called an f(3,-1) structure on R x T M
if F3 — F = 0. A special class of such structures is generated by the conditions

(10) JFdISFdIS;FdSI—S;FdJI—J .

Any endomorphism Fy given by (10), called dynamical f(3,-1) structure, is locally
expressed by

) )
Fy= |F7 —— —q}y 5= | @dt +
' ( TN W)

o
+F —— @dg* +
04l

0
0q°
where F7 | FY € F(J'm) . Thus Fy generates (by means of its eigenspaces) a
direct sum decomposition

T(RxTM) =V,

1,0

@ Hp, ® Im (F7 — 1)

where V;, , =Im (F? —Fy) and Hp, = Im (F? + Fy) is called a strong horizontal

subbundle (dim Hp, = m). It is generated by the vector fields

0 1 0
1 I G
(11) dq? 2 A 8(]&)
Im (F7 — I) is generated by the semisprays
9 o 9 o oA
(12) Fn + 9 g + (F° + Fy (J(1)) aq&) :

The generators (11) and (12) constitute a weak horizontal subbundle

Hp =Im (F; — 1) & Hp, .
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There is a bijective correspondence between dynamical f(3,-1) structures on R x
TM and connections on 7 , arranged by means of their horizontal subbundles;
thus F; and I'; are called associated if

Hr, = HJ/F’d .
The local expression of this correspondence is
F7=T7 =TS q}; FY =2T% ,

or
g g 1 g g 1 g
" =r +§F,\ Q(/\1); ,\:§F,\ :
This is the reason for connections on g to be also called dynamical connections
on RxTM.
A connection I' of order 2 on 7 1s called assoctated to a dynamical connection
ryif
[l =T7 4T afyy = F7 + F afyy -

It is so if and only if
Aé[F] = Imhr C Hr, .

Thus if we take an arbitrary connection I' of order 2 on # and any dynamical
connection 'y on R x T'M such that I' is associated to I'g , then both connections
have the same (dynamical) paths and in addition

Im (FZ —1)=A}[I] .

Consequently, there is the whole family of dynamical connections I'y on R x T M
with the same paths for any semispray ¢ on R x TM . The dynamical f(3,-1)
structure Fy associated to any such ['y generates a direct sum decomposition

T(RxTM) = Vi, @ AN ® Hp,

However, there 1s a canonical choice of such a dynamical connection I'y . Using
the natural soldering form S given by (6), one can construct a dynamical f(3,-1)
structure

Fi = —8:S ,

locally given by
o) _ o)

(2

= , FC=(0 - ——= q>‘ .
by an (1) 6(]()\1) (1)

The associated dynamical connection I'y has the components
g g

19 L0
13 7 == , = - = q .
( ) A 9 aq()\l) (1) 9 aq()\l) (1)

This I'y will be called natural dynamical connection associated to { .
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3. SPRAYS AND HOMOGENEOUS CONNECTIONS

Let T'y be a dynamical connection on R x T'M | ¢ an arbitrary soldering form
on R xTM . The (weak) torsion of T'q of type ¢ is

T = [hpd,gﬁ] .

Following (4) and (9), this tangent valued 2-form can be expressed by

dp? 0¢? ore o : :
Tw:( ST, e )\] ! goj»‘ — ®@dq' Ndg’ +

T TN 941
6@}7 6@‘7 N 6@‘7 6@‘7 ore ore .
— - —— 47T S — o + —L @ dt Ndg’
( o 0w Oy 7 Oay Oaty T dapyy T ) dafyy

The weak torsion of T'y of type S (briefly weak torsion) is then

re : :
e (_a; ) aaa ©dg' Adg’+
6‘1(1) (1)

gre  or? ) '
+[T9 - — — )\] ql)) r ® dt A dg?
( Todq,,  04p, i)

Let ¢ be an arbitrary semispray on R x T'M . Then the contraction of 7 by ( is

ore ore . ) o
(14) i(Ts = ( G+ 55 i — Y %)) 7~ ©di+
dgly, M 00, 94y,
ory aore 0 )
+ | T7 - qz1) ; ) 7 ©dg .
( T 0 f1> 5%) aq(l)

A tension of a dynamical connection T'y is the soldering form
H = —[C hp,] = —0chr, ,
which locally means

ore . 0 ore . 0 :
(15) H = (FU — ] '7 ) 6 > ® dt —|— ( —]Z q‘gl)) a—a ® qu .
3%) 1) dq7y, 1)

Definition 1. A dynamical connection I'y on R x T'M 1is called homogeneous if
its tension vanishes.
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By means of (15) it means that the components I'” and T'{ of T'y are homoge-
neous of order one in qgl) . Consequently we denote

ar?
18
gy

o _
Iy =

The strong torsion of I'y will be the soldering form
T = iCTS - H

where {75 and H are defined by (14) and (15).
All the previous objects are of the particular meaning in the case of the natural
dynamical connection associated to the semispray ¢ on R x TM . Owing to (13)

1t holds
1 0%¢7 , :
TS:(_i — ) gl Ay
0411y9971) ) )

iCTS IO,

and

T R A W
(16) H = (Cﬁﬂ'—%qzl) Gy~ 5 40 | 5o ©di+
2 0q(,,04(,, © 1 941
1 {0 *y d :
o (g ) o,

i (1) 7
2 \9qyy  OaiyyOayy 9

Consequently
T =—-H .

Definition 2. A semispray ¢ on R xT'M is called a spray, if C(Ul) are homogeneous

functions of order two in qgl) , which means

acry .
&) _ o
- q'yl) = 2 C(l)

j (
gy

(17)

Immediately we have

Proposition 1. The natural dynamical connection I'y associated to ( is homo-
geneous if and only if { is a spray.

Notice that for the above mentioned homogeneous I'y 1t holds :
2,0
o<

|
re, = - — W
T2 04}y)0q),
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and

(18) r’ =0 .

Proposition 2. Let 'y be an arbitrary homogeneous dynamical connection. Then
its associated semispray ( given by

Gy =17+ 17 ahy

is a spray if and only if
rv=0o0.

Proof. By the coordinate relations. a

Corollary 1. There is a bijective correspondence between the set of all sprays on
RxTM and the set of all homogeneous connections on R xT'M whose components

satisfy (18) .

Proof. By the previous two propositions, this correspondence identifies spray (
with its associated natural dynamical connection I'y , which is the unique homo-
geneous dynamical connection with the same paths whose strong torsion vanishes.

d

Finally we note the corresponding direct sum decomposition generated by an
arbitrary spray. The generators of the weak horizontal subbundle Hr, are

o 0 1 oo 0

a0 3_(12—1—5 ij4(1) W&) )
where the latter ones are the generators of the strong horizontal subbundle Hp,.
In particular, for an autonomous case on R x TM (i.e. C(Ul) depend on q>‘,q(>‘1)
only) we obtain nothing else than a theory concerning the “graphs” of geodesics
of homogeneous (resp. linear) connections on T'M . Then the following assertion
is not much surprising.

A lagrangian A = Ldt on B x T M is called homogeneous if L is homogeneous

of order two in q>‘1 . Its Lagrange vector field is the solution of the so-called char-
acteristic equation (see [6], [18]).

Proposition 3. Let a lagrangian A = L: dt on R x T'M be regular and homo-
geneous. Then its Lagrange vector field  is a spray if and only if L depends on

q>‘, q(>\1) only.
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