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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 227 { 234ON TRANSFORMATIONS OFFUNCTIONAL{DIFFERENTIAL EQUATIONSJan �Cerm�akAbstract. The paper contains applications of Schr}oder's equation to di�erentialequations with a deviating argument. There are derived conditions under which aconsidered equation with a deviating argument intersecting the identity y = x canbe transformed into an equation with a deviation of the form �(x) = �x. Moreover,if the investigated equation is linear and homogeneous, we introduce a special formfor such an equation. This special formmay serve as a canonical form suitable for theinvestigation of oscillatory and asymptotic properties of the considered equation.1. Introduction and notationIn this article the transformations of functional-di�erential equations with onedeviating argument are studied. These transformations are supposed to be global,i.e., they are de�ned on the whole de�nition intervals of corresponding equations.The case where the deviating argument of a considered equation is a su�cientlysmooth function with a positive derivative and which does not intersect the identityy = x in its domain has been already solved in [7]. It has been proved the possibilityof converting any such equation into an equation with a constant deviation.Here we investigate the case where the deviating argument is a su�cientlysmooth function with a nonzero derivative and having just one �xed point in itsdomain. If the initial set of such an equation consists of this �xed point only someauthors call such a case singular (see [1]). Moreover, in accordance with [8] weshow that under mild assumptions any linear homogeneous di�erential equationwith such a deviation can be globally transformed into an equation having a certainspecial form.We introduce the following notation. Let I be an interval of any type withendpoints a; b where a < b, b may be in�nite. An interval I is called a submodulus(resp.overmodulus) interval for a function f if f(I) � I (resp.f(I) � I). Further,denote by �k [f ] the set of �xed points of order k of the function f in I, i.e., theset of x 2 I which ful�l fk(x) = x and f i(x) 6= x for i = 1; 2; : : : ; k � 1. Here fn1991 Mathematics Subject Classi�cation : 34K05; Secondary 34K15.Key words and phrases: Functional-di�erential equation, singular case, transformation, canon-ical form.Received March 15, 1993.



228 JAN �CERM�AKdenotes the n�th iterate of f (for n > 0) and (�n)�th iterate of the inverse f�1(for n < 0); we put f0 = id.2. The case of a nonlinear equationConsider a functional-di�erential equation of the form(1) F (x; y(x); y(� (x)); y0(x); y0(� (x)); : : : ; y(n)(x); y(n)(� (x))) = 0 on I:It was shown in [7] that supposing � 2 Cn(I); � 0(x) > 0 on I and � (x) 6= xin I one can transform equation (1) by a change of the independent variablet = '(x) 2 Cn(I); '0(x) > 0 on I, into an equation with a constant deviationG(t; z(t); z(t+ c); z0(t); z0(t + c); : : : ; z(n)(t); z(n)(t+ c)) = 0 on'(I);where sign c = sign(� (x)� x).Since the transformation function '(x) is a solution of Abel's equation'(� (x)) = '(x) + c; x 2 Iit is obvious that I must not contain any �xed point of � . For the next we dealwith the problem whether we can transform equation (1) with a deviating argu-ment intersecting the identity in its domain into another suitable form. Functionalequations play an important role in this investigation.First we prove the following theorem.Theorem 1. Assume that I is a submodulus or overmodulus for f and let f 2Cn(I); n � 2; f 0(x) 6= 0 on I and �1[f ] = fpg; �2[f ] = ;. If jf 0(p)j 6= 1 then thereexists a unique one-parameter family of Cn solutions of Schr}oder's equation(2) '(f(x)) = �'(x); x 2 Iwhere � = f 0(p). All these solutions are de�ned on the interval I [ f(I) and havea positive derivative here.Proof. First suppose f 2 Cn(I), n � 2, f 0(x) � 0 on I, f(I) � I. It is well-known(see, e.g.[4]) that there exists a unique solution of (2)'(x) = c limn!1 fn(x)� p�nsatisfying '0(p) = c. If c > 0 then this formula yields one-parameter family of Cnfunctions increasing in I. We show that the assumption f 0(x) > 0 on I implies'0(x) > 0 on I.'0 is the continuous solution of the equation(3) '0(f(x)) = �f 0(x)'0(x); x 2 I:



ON TRANSFORMATIONS OF FUNCTIONAL{DIFFERENTIAL EQUATIONS 229Admit that '0(x0) = 0 for some x0 2 I. Then '0(fn(x0)) = 0 for all positiveintegers n. On the other handlimn!1'0(fn(x0)) = '0( limn!1 fn(x0)) = '0(p) > 0what is impossible.Further, let f 2 Cn(I), n � 2, f 0(x) > 0 on I and f(I) � I. Then rewriteequation (2) to the form'(f�1(x)) = ��1'(x); x 2 f(I):According to the previous part of the proof we can see that the formula'(x) = c limn!1�n(f�n(x)� p)yields the unique one-parameter Cn solutions with a positive derivative in f(I).Finally suppose f 2 Cn(I), n � 2 and f 0(x) < 0 on I. Assume the case f(I) � Ioccurs. Then every Cn solution of (2) satis�es also the equation'(f2(x)) = �2'(x); x 2 I:Conversely, if '� is a solution of the previous equation in an interval I� with end-points a and p 2 I� (which exists and it is determined uniquely up to multiplicativeconstant) then it is easy to verify that the function'(x) = � '�(x); for x 2 I�,�'�(f�1(x)); for x 2 f(I�)is a solution of (2) in I� [ f(I�). Since I� [ f(I�) � I this solution need not bede�ned in the whole I. If we de�ne'(x) = ��1'�(f(x))for x 2 I � I� [ f(I�) we continue this Cn solution onto I.The case I � f(I) is only a trivial modi�cation of the previous one. The state-ment is proved. �Remark. It is obvious that if we consider f with a positive derivative in I thenI is a submodulus or overmodulus interval for I.The assumption f 2 C1(I) instead of f 2 C2(I) need not be su�cient forthe existence of a solution of (2) with required properties. More precisely, thissolution need not belong to the class C1(I) nor to be an increasing function in I.However, it can be shown (see [10]) that by adding some reasonable requirementson f 2 C1(I) we obtain C1 solutions of (2) with a positive derivative in I.Further, remark that provided � 6= f 0(p) we cannot get any solution with apositive derivative in I because then equation (3) implies '0(p) = 0.Finally, it is easy to see that the case jf 0(p)j = 1 has to be excluded from ourconsiderations because assuming this we would obtain Schr}oder's equation havingconstant functions as the only monotonic C1 solutions in I.Now we can formulate the statement concerning the transformation of (1).



230 JAN �CERM�AKTheorem 2. Consider equation (1) and suppose that I is a submodulus or over-modulus interval for � 2 Cn(I) (if n � 2) or � 2 C2(I) (if n = 1). Fur-ther, let � 0(x) 6= 0 on I, �1[� ] = fpg; �2[� ] = ; and j� 0(p)j 6= 1. If (1) hasa solution then can be transformed by a change of the independent variablet = '(x) 2 Cn(I); '0(x) > 0 on I into a functional-di�erential equation of theform H(t; z(t); z(�t); z0(t); z0(�t); : : : ; z(n)(t); z(n)(�t)) = 0 on J;where � = � 0(p) and J = '(I).Moreover, the interval J with endpoints c; d has the following properties:(i) if limx!a+ � (x) = a 2 I (resp. limx!b� � (x) = b 2 I) then c = 0 (resp.d = 0)(ii) if limx!a+ � (x) = a =2 I (resp. limx!b� � (x) = b =2 I) then c = �1 (resp.d =1)Proof. Let y(x) be a solution of equation (1) in I. By a change of the independentvariable t = '(x) we get the function z(t) = z('(x)) = y(x) as a solution ofan equation obtained from (1) by the above transformation. Since we seek thetransformation function ' satisfying z('(� (x))) = z(�t), this function can beobtained as a solution of Schr}oder's equation'(� (x)) = �'(x); x 2 I:Due to Theorem 1 this equation has the one-parameter family of Cn solutionswith a positive derivative in I if the multiplicative parameter is positive. Further,notice that any k�th derivative of y at � (x) (k = 1; : : : ; n) can be expressed inthe form of a linear combinationy(k)(� (x)) = ak(t)z(k)(�t) + ak�1z(k�1)(�t) + � � �+ a0(t)z(�t);where ai(t) are suitable functions changing with respect to the degree k.It remains to show that the interval J has the above given form. The property(i) is trivial because '(p) = 0. As for the property (ii) concerns we prove, e.g.,the case of transform right endpoint. It is obvious that � has to be an increasingfunction. Let x0 2 (p; b). Because of the assumptions the iterates �n(x0) exist forall integers n and limn!
1 �n(x0) = b;where 
 = sign(� (x0) � x0). Since '(�n(x0)) = �n'(x0) for all integers n and'(x0) > 0 we get d = limx!b+ '(x) =1:Quite analogously it can be proved the case of transform left endpoint. �



ON TRANSFORMATIONS OF FUNCTIONAL{DIFFERENTIAL EQUATIONS 2313. Canonical form of a linear homogeneous equationIn the next part we deal with the question of the transformation of a linearhomogeneous functional-di�erential equation of the n-th order(4) y(n)(x) + n�1Xi=0 pi(x)y(i)(x) + n�1Xi=0 qi(x)y(i)(� (x)) = 0; x 2 [a; b)where the initial set Ea = fag, into an equation of the same type the solutions ofwhich are de�ned on some interval J . We wish to obtain an equation more suitablenot only by the form of the deviation but also by the form of its coe�cients. Forthe sake of simplicity we restrict our considerations to equations with delay only,i.e., such that � (x) � x for x 2 [a; b). Remark that the next results are valid forsome other types of deviation, e.g., for equations with an advanced argument.In [8] there were derived the conditions under which equation (4) can be trans-formed into a linear homogeneous functional-di�erential equation of the n-th orderwith a constant deviation and with the vanishing coe�cient at the (n � 1)-th de-rivative of an unknown function. Similarly we can proveTheorem 3. Let I := [a; b) and consider equation (4), where pi; qi 2 C0(I)(i = 0; 1; : : : ; n� 1); pn�1 2 Cn�1(I), � 2 Cn+1(I); � (a) = a; � (x) < x for x > a;� 0(x) > 0 on I and � 0(a) 6= 1. Then the singular case occurs and this equation canbe transformed into an equation of the formz(n)(t) + n�2Xi=0 ri(t)z(i)(t) + n�1Xi=0 si(t)z(i)(�t) = 0; t 2 Jwhere � = � 0(a) and J has the same properties as in Theorem 1.Proof. It is easy to see that Ea = fag. The most general pointwise transformationwhich converts equation (4) into an equation of the same type on some interval Jwith the delay �(t) = �t has the form (see [11])z(t) = g(t)y(h(t));where h is a Cn-di�eomorphism of J onto I, h0(t) > 0 on J , � (h(t)) = h(�t) on Jand g 2 Cn(J), g(t) 6= 0 on J .Denote by ' an increasing solution of Schr}oder's equation (2) (where f=� ) andput J := '(I), h := '�1 on J . Under the assumptions put on � we get withrespect to Theorem 1 that the function h satis�es all the required properties and,moreover, h is a Cn+1-di�eomorphism between J and I.Further, as for the introducing g concerns, it can be followed step by step themethod used in [8]. There it was derived that puttingg(t) := expf( 1n ) Z h(t)a� pn�1(s)dsg(h0(t)) 1�n2 ; t 2 J



232 JAN �CERM�AKwhere a� 2 I we get the zero coe�cient of z(n�1)(t). Obviously g 2 Cn(J) andg(t) 6= 0 on J . �Remark. It follows from the form of g that if equation (4) of the �rst order isconsidered then it is enough to require h to be C1-di�eomorphism of J on I, hence' to be C1-di�eomorphism of I on J . However, as it was mentioned in Remarkafter Theorem 1 the assumption � 2 C1(I) does not ensure this requirement.Consequence. Consider equationy0(x) + p(x)y(x) + q(x)y(� (x)) = 0 on I = [a;1)where p; q 2 C0(I); � 2 C2(I); � (a) = a; � (x) < x for x > a; limx!1� (x) =1; � 0(x) > 0 on I and � 0(a) 6= 1. Then this equation can be globally convertedinto an equation(5) z0(t) + s(t)z(�t) = 0 on [0;1)with � = � 0(a) and s(t) = expfR h(t)�(h(t)) p(s)dsgq(h(t))h0(t) on [0;1), where h ='�1; '(x) = limn!1��n(�n(x)� a) in I.Proof. We show that s has the given form. Indeed,z0(t) = g0(t)y(h(t)) + g(t)y0(h(t))h0(t);hence it holds y0(h(t)) + s(t) g(�t)h0(t)g(t)y(� (h(t))) = 0 on [0;1);where g(t) = exp(R h(t)a� p(s)ds). Therefores(t) = g(t)g(�t) q(h(t))h0(t):Now the statement follows immediately. �Example. Consider(6) y0(x) + py(x) + qy(x�) = 0 on (1;1);where � > 0, � 6= 1, p, q 2 R. Due to [7] this equation can be transformed intoan equation with a constant deviation. The transformation function is a solutionof Abel's equation '(x�) = '(x) + c on (1;1);



ON TRANSFORMATIONS OF FUNCTIONAL{DIFFERENTIAL EQUATIONS 233where sign c = sign ln�. If we put c = ln� then '(x) = ln lnx is one of solutionsof this equation. Moreover, according to [8] it is possible to convert equation (6)into an equation z0(t) + a(t)z(t+ ln�) = 0 on (�1;1);a(t) = q exp(t+exp(t)+p exp(exp(t))�p exp(� exp(t))), which is a suitable canoni-cal form for equation (6). We have used the above mentioned transformation, whereh(t) = '�1(t) = exp(exp(t)), g(t) = exp(p R h(t)2 ds).However, if we consider(6') y0(x) + py(x) + qy(x�) = 0 on [1;1);where � > 0,� 6= 1, p, q 2 Rthen the above transformation cannot be done. On theother hand, � (x) = x� ful�ls all the assumptions of the previous statement, hencewe can transform (6') into the form given there. One can read the correspondingSchr}oder's equation as '(x�) = �'(x) on [1;1):Since �n(x) = x�n for all integers n we get C1 solutions of this functional equationon [1;1) in the form '(x) = c lnx. Put c = 1. Using the considered pointwisetransformation, where h(t) = '�1(t) = exp(t), g(t) = exp(p R h(t)1 ds) we canconvert equation (6') into an equationz0(t) + s(t)z(�t) = 0 on [0;1);s(t) = q exp(t + p exp(t) � p exp(�t)), which may serve as a canonical form forequation (6').Remark that equation (6') as well as equation (6) is the equation with the delay(resp.with the advanced argument) if and only if � < 1 (resp. � > 1).4. Final remarksWe have seen that the existence of �xed points of a deviating argument plays avery important role in the investigation of transformations of functional-di�erentialequations. If a deviating argument contains none or one �xed point in its domainthen this deviation can be transformed under mild assumptions again into a devi-ation with none or one �xed point in its domain but having more suitable form,e.g., � (x) = x � 1 or � (x) = �x. Generally, the considered global transformationpreserves a number of �xed points of any deviating argument. Indeed, if we wishto convert an equation with a deviating argument �1 into an equation with a de-viating argument �2 then studied transformation function ' can be obtained as asolution of the functional equation'(�1(x)) = �2('(x)):



234 JAN �CERM�AKSupposing �1 has n �xed points in its domain we see that �2 has to have the samenumber of �xed points as well, namely '(p1); : : : ; '(pn).Some types of canonical forms for certain classes of linear homogeneousfunctional-di�erential equations were introduced in [8] and in the previous part.Because of the form of the used global transformation which preserves the distri-bution of zeros of solutions it is su�cient to restrict the investigation of oscillatoryor nonoscillatory properties of a considered equation to the investigation of itscanonical form. Similarly it is possible to study the asymptotic behavior of solu-tions of some linear homogeneous equation. The global transformation of any suchequation into its canonical form is required to be invariant with respect to the in-vestigated property. The equation (5) and its modi�cations have been extensivelystudied (see, e.g., [9], [5] or [3]) as well as the equation of the form (6) or (6') (see[2]). From this point of view we can make some results obtained in these areasmore general. References[1] E�lsgolc, L. E., Vvedenije v teoriju di�erencialnych uravnenij s otklonjaju�s�cimsa argumentom,Nauka, Moscow, 1964. (Russian)[2] Heard, M. L., Asymptotic behavior of solutions of the functional di�erential equationx0(t) = ax(t) + bx(t�); � > 1, J.Math.Anal.Appl. 44 (1973), 745{757.[3] Kato, T., McLeod, J. B., The functional-di�erential equation y0(x) = ay(�x) + by(x), Bull.Amer. Math. Soc. 77 (1971), 891{937.[4] Kuczma,M., Functional Equations in a Single Variable, Polish Scient.Publ.,Warszawa, 1968.[5] Lade, G. S., Lakshmikantham,V., Zhang, B. G., Oscillation Theory of Di�erential Equationswith Deviating Arguments, Marcel Dekker, New York, 1983.[6] Lim, E.-B., Asymptotic behavior of solutions of the functional di�erential equationx0(t) = Ax(�t) +Bx(t); � > 0, J.Math.Anal.Appl. 55 (1976), 794{806.[7] Neuman, F., On transformations of di�erential equations and systems with deviating argu-ment, Czechoslovak Math.J. 31(106) (1981), 87-90.[8] Neuman, F., Transformation and canonical forms of functional-di�erential equation, Proc.Roy.Soc.Edinburgh 115A (1990), 349-357.[9] Pando�, L., Some observations on the asymptotic behaviors of the solutions of the equationx0(t) = A(t)x(�t)+B(t)x(t); � > 0, J.Math.Anal.Appl. 67 (1979), 483{489.[10] Szekeres, G., Regular iteration of real and complex functions, Acta Math. 100 (1958),203{258.[11] Tryhuk, V., The most general transformation of homogeneous retarded linear di�erentialequations of the n-th order, Math.Slovaka 33 (1983), 15{21.Jan �Cerm�akDepartment of MathematicsTechnical University of BrnoTechnick�a 2616 69 Brno, CZECH REPUBLIC
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