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ON TRANSFORMATIONS OF
FUNCTIONAL-DIFFERENTIAL EQUATIONS

Jan CERMAK

ABSTRACT. The paper contains applications of Schréder’s equation to differential
equations with a deviating argument. There are derived conditions under which a
considered equation with a deviating argument intersecting the identity y = z can
be transformed into an equation with a deviation of the form 7(z) = Az. Moreover,
if the investigated equation is linear and homogeneous, we introduce a special form
for such an equation. This special form may serve as a canonical form suitable for the
investigation of oscillatory and asymptotic properties of the considered equation.

1. INTRODUCTION AND NOTATION

In this article the transformations of functional-differential equations with one
deviating argument are studied. These transformations are supposed to be global,
i.e., they are defined on the whole definition intervals of corresponding equations.

The case where the deviating argument of a considered equation is a sufficiently
smooth function with a positive derivative and which does not intersect the identity
y = @ in its domain has been already solved in [7]. It has been proved the possibility
of converting any such equation into an equation with a constant deviation.

Here we investigate the case where the deviating argument is a sufficiently
smooth function with a nonzero derivative and having just one fixed point in its
domain. If the initial set of such an equation consists of this fixed point only some
authors call such a case singular (see [1]). Moreover, in accordance with [8] we
show that under mild assumptions any linear homogeneous differential equation
with such a deviation can be globally transformed into an equation having a certain
special form.

We introduce the following notation. Let 7/ be an interval of any type with
endpoints a, b where a < b, b may be infinite. An interval [ is called a submodulus
(resp.overmodulus) interval for a function f if f(I) C I (vesp.f(I) D I). Further,
denote by oy, [f] the set of fixed points of order k of the function f in I, i.e., the
set of # € I which fulfil f*(z) = = and fi(z) # z fori =1,2,...,k — 1. Here f"
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denotes the n—th iterate of f (for n > 0) and (—n)—th iterate of the inverse f~!
(for n < 0); we put f° = id.

2. THE CASE OF A NONLINEAR EQUATION

Consider a functional-differential equation of the form

(1) Fo, (@), ur(0), 9 (), (@), ..y @)y (r(@) =0 onl.

It was shown in [7] that supposing 7 € C™(I), 7'(z) > 0 on I and 7(z) # =
in I one can transform equation (1) by a change of the independent variable
t=p(x) € C™"(I), ¢'(x) >0 on I, into an equation with a constant deviation

G(t, 2(t), 2(t +¢), 2'(t), ' (t + ¢), ..., 20(8), 2t +¢)) =0 onp(]),

where sign ¢ = sign(7(z) — z).
Since the transformation function ¢(z) is a solution of Abel’s equation

p(r(2)) = p(x) +e, wel

it 1s obvious that I must not contain any fixed point of 7. For the next we deal
with the problem whether we can transform equation (1) with a deviating argu-
ment intersecting the identity in its domain into another suitable form. Functional
equations play an important role in this investigation.

First we prove the following theorem.

Theorem 1. Assume that I is a submodulus or overmodulus for f and let f €
C*(I), n>2, f'(x) # 0on I and o1[f] = {p}, o2[f] = 0. If |f'(p)| # 1 then there

exists a unique one-parameter family of C” solutions of Schréder’s equation

(2) p(f(@)) = Ap(e), wel

where A = f'(p). All these solutions are defined on the interval I U f(I) and have
a positive derivative here.

Proof. First suppose f € C*(I),n > 2, f'(z) > 0on I, f(I) C I.Tt is well-known
(see, e.g.[4]) that there exists a unique solution of (2)

T G
oty = fim =2
satisfying ¢’(p) = e. If ¢ > 0 then this formula yields one-parameter family of C”
functions increasing in I. We show that the assumption f/(z) > 0 on I implies
¢'(#) > 0on I
¢’ 1s the continuous solution of the equation

(3) ¢ (f(2)) =
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Admit that ¢'(z¢) = 0 for some zg € I. Then ¢'(f"(zo)) = 0 for all positive
integers n. On the other hand

im /(7 (z0)) = ¢'( lim f"(x0)) = ¢'(p) > 0

what is impossible.
Further, let f € C™"(I), n > 2, f'(#) > 0 on I and f(I) D I. Then rewrite
equation (2) to the form

(S @) =2 e(x),  x e f(I).
According to the previous part of the proof we can see that the formula
p(e) = ¢ lim A'(f7"(z) — p)

yields the unique one-parameter C™ solutions with a positive derivative in f(7).
Finally suppose f € C*(I), n > 2 and f/'(2) < 0 on I. Assume the case f(I) C I
occurs. Then every C” solution of (2) satisfies also the equation

o(f(x)) = Mo(z), rel.

Conversely, if ¢* 18 a solution of the previous equation in an interval 7* with end-
points @ and p € I* (which exists and it is determined uniquely up to multiplicative
constant) then it is easy to verify that the function

[ ¢ (2), for x € I*,
plo) = { A" (f N (2)), forx € F(I7)

is a solution of (2) in I U f(I*). Since I* U f(I*) C I this solution need not be
defined in the whole I. If we define

plx) = A1 (f(2))

for # € I — I* U f(I*) we continue this C™ solution onto I.
The case I C f(I) is only a trivial modification of the previous one. The state-
ment is proved. a

Remark. It is obvious that if we consider f with a positive derivative in I then
I is a submodulus or overmodulus interval for 7.

The assumption f € C(I) instead of f € C?(I) need not be sufficient for
the existence of a solution of (2) with required properties. More precisely, this
solution need not belong to the class C'1(I) nor to be an increasing function in I.
However, it can be shown (see [10]) that by adding some reasonable requirements
on f € CY(I) we obtain C! solutions of (2) with a positive derivative in I.

Further, remark that provided A # f/(p) we cannot get any solution with a
positive derivative in I because then equation (3) implies ¢'(p) = 0.

Finally, it is easy to see that the case |f'(p)| = 1 has to be excluded from our
considerations because assuming this we would obtain Schréder’s equation having
constant functions as the only monotonic C'' solutions in I.

Now we can formulate the statement concerning the transformation of (1).
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Theorem 2. Consider equation (1) and suppose that I is a submodulus or over-
modulus interval for 7 € C™(I) (if n > 2) or 7 € C*(I) (if n = 1). Fur-
ther, let 7'(z) # 0 on I, ay[r] = {p}, o2[r] = 0 and |7'(p)| # 1. If (1) has
a solution then can be transformed by a change of the independent variable
t = p(x) € C"(I), ¢'(x) > 0 on I into a functional-differential equation of the
form

H(t, 2(t), 2(At), 2/ (), 2/ (ML), ..., 2((8), 2 (M) =0 on J,
where A = 7'(p) and J = ¢(I).
Moreover, the interval J with endpoints ¢, d has the following properties:

(i) if lim+ (z) = a €I (resp. hI?— T(z) = b€ I) thenc =0 (resp.d = 0)

(ii) if lim+ m(z) =a¢ I (resp. hI?— m(z) =b ¢ I) then c = —o0 (resp.d = o)

Proof. Let y(z) be a solution of equation (1) in I. By a change of the independent
variable t = o(x) we get the function z(¢) = z(¢(2)) = y(x) as a solution of
an equation obtained from (1) by the above transformation. Since we seek the
transformation function ¢ satisfying z(¢(7(x))) = z(At), this function can be
obtained as a solution of Schroder’s equation

p(r(x) = Ap(z), wel

Due to Theorem 1 this equation has the one-parameter family of C” solutions
with a positive derivative in I if the multiplicative parameter is positive. Further,
notice that any k—th derivative of y at 7(z) (k = 1,...,n) can be expressed in
the form of a linear combination

Yy (r(2) = ap ()2 (M) 4+ ap_12F D) + - 4 ao(t)z( M),

where a;(t) are suitable functions changing with respect to the degree k.

It remains to show that the interval J has the above given form. The property
(i) is trivial because ¢(p) = 0. As for the property (ii) concerns we prove, e.g.,
the case of transform right endpoint. It is obvious that 7 has to be an increasing
function. Let g € (p, ). Because of the assumptions the iterates 77 (zg) exist for
all integers n and

lim 77(zg) = b,
n—yo0
where v = sign(7(zg) — g). Since ¢(7"(xg)) = A"¢(xg) for all integers n and
@(x0) > 0 we get
d= xlilrlI]lJr p(z) = .

Quite analogously it can be proved the case of transform left endpoint. a
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3. CANONICAL FORM OF A LINEAR HOMOGENEOUS EQUATION

In the next part we deal with the question of the transformation of a linear
homogeneous functional-differential equation of the n-th order

@ @+ Y pE@) Y w0 =0, e efad

where the initial set £, = {a}, into an equation of the same type the solutions of
which are defined on some interval J. We wish to obtain an equation more suitable
not only by the form of the deviation but also by the form of its coefficients. For
the sake of simplicity we restrict our considerations to equations with delay only,
i.e., such that 7(z) < z for « € [a,b). Remark that the next results are valid for
some other types of deviation, e.g., for equations with an advanced argument.

In [8] there were derived the conditions under which equation (4) can be trans-
formed into a linear homogeneous functional-differential equation of the n-th order
with a constant deviation and with the vanishing coefficient at the (n — 1)-th de-
rivative of an unknown function. Similarly we can prove

Theorem 3. Let I := [a,b) and consider equation (4), where p;, ¢; € C°(I)
(i=0,1,...,n=1), po_1 € C"YI), 7 € C"*(]), 7(a) = a, 7(x) < x for x > a,
/() > 0 on I and 7'(a) # 1. Then the singular case occurs and this equation can
be transformed into an equation of the form

n—2 n—1
W)+ )+ st (M) =0, te
i=0 i=0

where A = 7'(a) and J has the same properties as in Theorem 1.

Proof. Tt is easy to see that E, = {a}. The most general pointwise transformation
which converts equation (4) into an equation of the same type on some interval .J
with the delay p(t) = At has the form (see [11])

where h is a C"-diffeomorphism of J onto I, 2'(t) > 0 on J, 7(h(t)) = h(M) on J
and g € C™(J), g(t) #0on J.

Denote by ¢ an increasing solution of Schréder’s equation (2) (where f=1) and
put J := @(I), h := ¢~ on J. Under the assumptions put on 7 we get with
respect to Theorem 1 that the function h satisfies all the required properties and,
moreover, h is a C"t1-diffeomorphism between J and I.

Further, as for the introducing g concerns, 1t can be followed step by step the
method used in [8]. There it was derived that putting

1

n

1—n

h(t)
V[ sk @)’ e

g(t) = exp{(
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where a* € I we get the zero coefficient of z(”_l)(t). Obviously ¢ € C"(J) and
g(t) #0on J. O

Remark. It follows from the form of g that if equation (4) of the first order is
considered then it is enough to require A to be C''-diffeomorphism of J on I, hence
© to be C'-diffeomorphism of I on J. However, as it was mentioned in Remark
after Theorem 1 the assumption 7 € C'(I) does not ensure this requirement.

Consequence. Consider equation

Y (@) + ple)y(e) + q(e)y(r(¢)) =0 onl =[a,o0)

where p, ¢ € C°I), 7 € C*(I), 7(a) = a, 7(z) < x for z > a, lim7(x) =
oo, 7(x) > 0 on I and 7'(a) # 1. Then this equation can be globally converted
into an equation

(5) Z(t) + s(t)z(At) = 0 on [0, o)

with A = 7/(a) and s(t) = exp{f(h(t))p s)dstq(h(t))h'(t) on [0,00), where h =
o~ p(z) = lim A™ ( "(z) —a) in 1.

Proof. We show that s has the given form. Indeed,
2 () = ¢'(D)y(h(1) + g () ()N (1),

hence 1t holds

s(t) = =———q(h(t))h'(t
(t) T (h())h'(t)
Now the statement follows immediately. a
Example. Consider
(6) Yy (x) +py(z) + qy(z®*) =0 on(l,00),

where & > 0, « # 1, p, ¢ € R. Due to [7] this equation can be transformed into
an equation with a constant deviation. The transformation function is a solution
of Abel’s equation

p(a%) = ple) +c¢  on(l,0),
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where signe = sign Ina. If we put ¢ = In« then ¢(z) = Inln z is one of solutions
of this equation. Moreover, according to [8] it is possible to convert equation (6)
into an equation

Z(t)+a(t)z(t +1Ina) =0 on (—o0, 00),

a(t) = qexp(t+exp(t)+pexp(exp(t))—pexp(aexp(t))), which is a suitable canoni-
cal form for equation (6). We have used the above mentioned transformation, where
_ h
h(t) = o= 1(t) = exp(exp(t)), g(t) = exp(p [, ) ds).
However, if we consider

(6”) Y (x) + py(z) + qy(z¥) = 0 on[l,00),

where o > 0, &« # 1, p, ¢ € R then the above transformation cannot be done. On the
other hand, 7(#) = « fulfils all the assumptions of the previous statement, hence
we can transform (6°) into the form given there. One can read the corresponding
Schréder’s equation as

(2 = ap(x) on[l,00).

Since ™ (x) = z" for all integers n we get C'™ solutions of this functional equation
on [1,00) in the form ¢(z) = elnxz. Put ¢ = 1. Using the considered pointwise
transformation, where h(t) = ¢~ 1(t) = exp(t), g(t) = exp(pflh(t) ds) we can
convert equation (6”) into an equation

Z(t) + s(t)z(at) =0 on [0, 00),

s(t) = gexp(t + pexp(t) — pexp(at)), which may serve as a canonical form for
equation (67).

Remark that equation (6”) as well as equation (6) is the equation with the delay
(resp.with the advanced argument) if and only if & < 1 (resp. o > 1).

4. FINAL REMARKS

We have seen that the existence of fixed points of a deviating argument plays a
very important role in the investigation of transformations of functional-differential
equations. If a deviating argument contains none or one fixed point in its domain
then this deviation can be transformed under mild assumptions again into a devi-
ation with none or one fixed point in its domain but having more suitable form,
e.g., 7(x#) = & — 1 or 7(2) = Az. Generally, the considered global transformation
preserves a number of fixed points of any deviating argument. Indeed, if we wish
to convert an equation with a deviating argument 7 into an equation with a de-
viating argument 7o then studied transformation function ¢ can be obtained as a
solution of the functional equation

p(r1(x)) = Ta2(p(2)).
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Supposing 71 has n fixed points in its domain we see that 5 has to have the same
number of fixed points as well, namely ¢(p1), ..., ©(pn).

Some types of canonical forms for certain classes of linear homogeneous
functional-differential equations were introduced in [8] and in the previous part.
Because of the form of the used global transformation which preserves the distri-
bution of zeros of solutions 1t is sufficient to restrict the investigation of oscillatory
or nonoscillatory properties of a considered equation to the investigation of its
canonical form. Similarly it is possible to study the asymptotic behavior of solu-
tions of some linear homogeneous equation. The global transformation of any such
equation into its canonical form is required to be invariant with respect to the in-
vestigated property. The equation (5) and its modifications have been extensively
studied (see, e.g., [9], [5] or [3]) as well as the equation of the form (6) or (6°) (see
[2]). From this point of view we can make some results obtained in these areas
more general.
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