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MAPPINGS RELATED TO CONFLUENCE

J. J. CHARATONIK

ABSTRACT. Necessary and sufficient conditions are found in the paper for a map-
ping between continua to be monotone, confluent, semi-confluent, joining, weakly
confluent and pseudo-confluent. Three lists of these conditions are presented. Two
are formulated in terms of components and of quasi-components, respectively, of
connected closed subsets of the range space, while the third one in terms of con-
nectedness between subsets of the domain space. Some basic relations concerning
these concepts are studied.

A mapping (i.e. a continuous function) f : X — Y between metric continua X
and Y is called:

— confluent provided that for each subcontinuum ) of Y each component of the
inverse image f~1(Q) is mapped onto @ under f;

— semi-confluent provided that for each subcontinuum ¢ of Y and for every two
components C7 and Cy of the inverse image f~1(Q) we have either f(C1) C f(C2)
or f(C2) C f(Ch);

— joining provided that for each subcontinuum @ of Y and for every two com-
ponents C7 and Cs of the inverse image f~1(Q) we have f(C1) N f(C2) # 0;

— weakly confluent provided that for each subcontinuum ) of Y there is a
component of the inverse image f~1(Q) which is mapped onto @ under f;

— pseudo-confluent provided that for each irreducible subcontinuum @ of Y
there is a component of the inverse image f~1(Q) which is mapped onto @ under

f.

The above definitions of the discussed classes of mappings are formulated in
terms of continua, and are applicable rather to mappings between continua (com-
pare [L.2] and [L3], for example) than to mappings between arbitrary topologi-
cal spaces, because studying continua requires a combination of two properties:
compactness and connectedness. So, it is hard to work with these concepts when
mappings between topological spaces (without any additional assumptions) are
studied. Therefore, it 1s natural to ask about a possibility to reformulate these
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concepts in such a way that the new definitions could be applied to mappings
between topological spaces and that they would coincide with old ones in the case
when mappings between continua are under consideration.

There were some efforts in this direction, made first for the most important
from among the above recalled classes of mappings, viz. the class on confluent
ones, in [L1]. Namely a modification of the definition of the concept has been
proposed there which was expressed in terms of connectedness between sets ([L1],
p. 223). The same idea was later used by Lelek and Tymchatyn in [LT] for some
related classes of mappings, and it was applied to study mappings of hereditarily
normal spaces and mappings onto locally connected ones (compare Chapters 2 and
3 of [LT]). The obtained results have led to new theorems in continuum theory
(Chapters 4 and 5 of [LT]). Also the paper [G] by Grispolakis contains extensions
of the concepts of confluent, weakly confluent and pseudo-confluent mappings to
the case when both domain and range are general topological spaces.

Let f : X — Y be a mapping and let  C Y be a connected closed subset
of Y. In [LT] two kinds of such extensions are introduced. One (definitions (c),
(w), and (p), p. 1336 of [LT]) is formulated in terms of connectivity of f~1(Q)
between some of its subsets; the other (definitions (¢’), (w') and (p’), p. 1337
of [LT]) uses condition related to quasi-components of f~!(Q). The paper [G]
is a large study of several concepts of (perfect) mappings between topological
spaces related to confluence (confluent, weakly confluent and pseudo-confluent),
but notions introduced and discussed there are formulated in a different manner
then the corresponding concepts considered previously in [LT]). Roughly speaking,
conditions concerning quasi-components of f~1(Q) are considered if the set Q@ C Y
is assumed to be merely either nonempty (H-confluent, H-weakly confluent and
H-pseudo-confluent), or connected (h-confluent, h-weakly confluent and h-pseudo-
confluent), without being closed ([G], p. 113). Neither [LT] nor [G] contains any
similar treatment of semi-confluent and of joining mappings. The class of semi-
confluent mappings i1s intermediate between classes on confluent and of weakly
confluent mappings (when considered as defined on continua), and the class of
joining mappings is larger than the class of semi-confluent ones (see [M] , 3.3, 3.4
and Theorem 3.8, p.13).

The aim of the present paper is to extend the known definitions of these two
classes of mappings, viz. semi-confluent and joining ones; to the general case of
mappings between arbitrary topological spaces. Three kinds of such new definitions
are presented in the paper. The first two are formulated in terms of components and
of quasi-components of connected closed subsets of the range space, respectively,
while the third one is formulated in terms of connectedness between subsets of the
domain space. We also present some basic relations concerning these concepts.

Reflections about semi-confluent and joining mappings lead us to another set of
definitions, expressed in a similar way as previous ones in [LT] for confluent, weakly
confluent and pseudo-confluent mappings. Since notation used in [LT] and [G] are
different, we do not follow any of them, and we label the discussed conditions with
(C), (SC), (1), (WC) and (PC) when referred to confluent, semi-confluent, joining,

weakly confluent and pseudo-confluent mappings, respectively.



MAPPINGS RELATED TO CONFLUENCE 87

At the end of the paper we discuss interrelations between various definitions of
monotone mappings, either known in the literature of formulated along the ideas
presented for other classes of mappings.

The author expresses his gratitude to W. J. Charatonik for numerous stimulating
discussions regarding the topic of this paper.

1. PRELIMINARIES.

A topological space X is said to be connected between two its subsets A and B
provided there is no closed and open subset in X that contains A and is disjoint
with B (see [K], p. 142). In other words, a space X is connected between A and
B provided that there are no subsets A’ and B’ of X, both closed and open
simultaneously, such that

ACA, BCB ANB =0 and X=AUB.

Clearly, connectedness of a space X between points is an equivalence relation
on X. The equivalence classes of this relation are called quasi-components of the
space, 1.e., a quasi-component of a space X containing a point p € X is the set of
all points € X such that the space X is connected between {p} and {«}. In other
words, a quasi-component of a space X containing a point p € X is the intersection
of all closed and open subsets of X containing p. The reader is referred to [K], §46,
IV and V, p. 142-151 for a detailed information concerning further properties of
these concepts. In particular, the following statements are known (compare [K],

§46, IV, Theorems la — 1d, p. 143, and V, Theorem 1, p. 148).

1.1. Statement. If a topological space is connected between its subsets A and
B, then A # 0 # B, and if A C A; and B C B, then the space is connected
between A; and Bj.

1.2. Statement. A topological space is connected if and only if for each two
points a and b the space is connected between {a} and {b}.

1.3. Statement. The component containing a point p of a topological space is
contained in the quasi-component of the space containing p.

1.4. Statement. Let subsets A and B of a topological space X be given. If there
exists a quasi-component of X that intersects both A and B, then X is connected
between A and B.

Proof. Let C stand for the quasi-component of X such that

ANC#0#BnC.

Take a € ANC and b € BN C. Since a and b are in C', the space is connected
between {a} and {b} by the definition, whence X is connected between A and B
by Statement 1.1. a
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1.5. Remark. Connectedness of a space X between its subsets A and B does not
imply the existence of a quasi-component C' of X that intersects both A and B,
even if X is a compact metric space. In fact, let

H={0}U{l/n:neN},

put X = H x [0,1] (with the usual topology inherited from the plane), and take
A=1{(0,0)} and B = (H\{0}) x (0,1]. Then the space X is compact and metric,
and it is connected between A and B, while the component {0} x [0,1] of X
contains A and is disjoint with B.

1.6. Remark. Note that in the example of Remark 1.5 the space X, being con-
nected between the sets A and B, is not connected between any pair of singletons
{a} and {b} such that a € A and b € B. This holds because the set B is not closed.

The above remark is related to a property of topological spaces, which is due
to S. Mazurkiewicz (see e.g. [K], footnote (1) on p. 168).

(M) If a space X is connected between its closed subsets A and B, then there
are points a € A and b € B such that X is connected between {a} and
{o}.
The following results are known (see [K], §47, IT, Theorem 1, p. 168, and The-
orem 2, p. 169).

1.7. Statement. Every compact Hausdorff space X has property (M).

1.8. Statement. If a topological space has property (M), in particular if it is a
compact Hausdorff space, then their quasi-components coincide with the compo-
nents.

As a consequence of Statements 1.4 and 1.8 we get the next one (compare [K],

§47, Theorem 3, p. 170).

1.9. Statement. A space with property (M) (in particular a compact Hausdorff
space) Is connected between its closed subsets A and B if and only if there exists
a quasi-component (i.e. a component) C' of the space such that

ANC#0#BnC.

Below we extend the concepts of mappings named in the beginning of the pa-
per by considering mappings between topological spaces X and Y, replacing a
subcontinuum of ¥ by a connected closed subset of Y, and replacing components
by quasi-components. Therefore, the extended concepts coincide with the original
ones if mappings between continua are under consideration. More precisely, we
formulate conditions (C1), (SC1), (J1), (WC1) and (PC1), as well as conditions
(C2), (SC2), (J2), (WC2) and (PC2), related to mappings between topological
spaces, which are equivalent to the condition that the mapping is confluent, semi-
confluent, joining and pseudo-confluent correspondingly, when applied to mappings
between continua (i.e. compact connected Hausdorff spaces).
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2. CONFLUENT MAPPINGS.

Confluence of a mapping f : X — Y between topological spaces X and Y can
be defined by the following conditions.

(C1) For each connected closed nonempty subset ¢ of ¥ each component of the
inverse image f~1(Q) is mapped onto @ under f.

(C2) For each connected closed nonempty subset @ of Y each quasi-component
of the inverse image f~1(Q) is mapped onto @ under f.

(C3) For each connected closed nonempty subset @ of Y and points z € f~1(Q)
and y € @ the set f~1(Q) is connected between {x} and f~1(y).

2.0. Remark. Note that condition (C2) is just (¢’) of [LT], p. 1337 and (¢) of
[G], p- 113, as well as (C3) coincides with (¢) of [LT], p. 1336.

To formulate relations between the three conditions let us recall that if f : X —
Y is a mapping between topological spaces X and Y, then a subset A of X is said
to be an inverse set provided A = f=1(f(A)). Obviously for each subset @ of V'
the set f=1(Q) is an inverse set (compare [W], p. 137).

2.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (Cl) implies (C2).

(b)  (C2) implies (C3).

(¢) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of
the space X has property (M), then (C3) implies (C1).

Proof. (a). Apply Statement 1.3.

(b). Assume (C2) and let @), # and y be as in (C3). Take the quasi-component '
of f~1(Q) that contains the point z. Then f(C) = @ by (C2), whence CNf~1(y) #
0. Thus f~1(Q) is connected between {x} and f~1(y) according to Statement 1.4,
so (C3) holds.

(c). Assume (C3). Let a nonempty subset @) of Y be connected and closed, and
let C' be a component of f~1(Q). Obviously f(C) C Q. To show that @ C f(C)
take a point y € @, and choose a point € C. By (C3) the set f~1(Q) is connected
between {z} and f~!(y). By continuity of f the set f~1(Q) is a closed subset of X,
and therefore it has property (M) by assumption. By Statement 1.8 we infer that C'
is a quasi-component of f~1(Q). Since f~1(y) is closed, property (M) implies the
existence of a point #’ in f~!(y) such that f~1(Q) is connected between {x} and
{@’}. According to the definition of a quasi-component we have 2’ € C', whence

y= f(z") € f(C), and therefore @ C f(C) as needed. d

2.2. Corollary. For mappings f : X — Y between compact Hausdorff spaces X
and Y conditions (C1), (C2) and (C3) are equivalent.

2.3. Corollary. For a mapping f : X — Y between continua X and Y each of
conditions (C1), (C2) and (C3) is equivalent to confluence of f.

Assumptions in Theorem 2.1 (¢) and in Corollary 2.2 are essential. This will be
shown in Example 3.6 and Remark 3.7.
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The following result is known (see [LT], Corollary 1.4, p. 1337).

2.4. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y such that f~1(y) is compact for each y € Y. Then conditions
(C2) and (C3) are equivalent.

2.5. Question. Does (C2) imply (Cl1) for surjective mappings f : X — Y with
compact point inverses between topological spaces X and Y7

3. SEMI-CONFLUENT MAPPINGS.

Now we are going to discuss some conditions related to semi-confluence of a
mapping f: X — Y. Let us consider the following three conditions.

(SC1) TFor each connected closed nonempty subset @ of ¥ and for every two
components C; and C3 of the inverse image f~1(Q) we have either f(C1) C
f(Cy) or f(Ch) C f(Ch).

(SC2) TFor each connected closed nonempty subset @ of ¥ and for every two
quasi-components C7 and Cy of the inverse image f~1(Q) we have either
f(C1) Cf(Ch) or f(Ch) C f(Ch).

(SC3) TFor each connected closed nonempty subset @ of Y and points #; and 2 in
F7HQ) the set f~1(Q) is connected either between {z1} and f=1(f(z2))
or between {x2} and f=1(f(z1)).

3.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a)  (SC1) implies (SC2).

(b)  (SC2) implies (SC3).

(¢) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of
the space X has property (M), then (SC3) implies (SC1).

Proof. (a). Assume (SC1) and suppose on the contrary that (SC2) is not satis-
fied. Thus there are a connected closed nonempty subset @ of Y and two quasi-
components Dy and Ds of the inverse image f~1(Q) such that f(D1)\f(D2) #
0 # F(D)\f(D1).

Take points g1 € f(D1)\f(D2) and q2 € f(D2)\f(D1), and let p; € Dy and ps €
Dy be such that f(p1) = ¢1 and f(p2) = ¢2. Denote by C; and C5 the components
of f~1(Q) that contain points p; and ps respectively. Then by Statement 1.3 we
have C1 C Dy and Cy C Ds. Condition (SC1) implies that either f(C1) C f(C3) or
F(C32) C f(Ch). In the former case we have ¢q; = f(p1) € f(C1) C f(C2) C f(D2);
if the latter one holds, then similarly ¢ = f(p2) € f(C2) C f(Cy) C f(D1). In
both we get a contradiction with the choice of ¢; and g¢».

(b). Assume (SC2) and let @, z1 and x5 be as in (SC3). Denote by C and C4
the quasi-components of f=1(Q) that contain the points x; and x5 respectively.
If f(C1) C f(Cb), then f(z1) € f(C2), whence f=1(f(z1)) N Cs # 0. By the
definition of a quasi-component, the set f=1(Q) is connected between {z>} and a
point of f=1(f(z1))NC2, and so it is connected between {z2} and f=1(f(x1)) (see
Statement 1.1). If f(C3) C f(C1), the proof is the same.



MAPPINGS RELATED TO CONFLUENCE 91

(c). Assume (SC3). Let a nonempty subset @ of ¥ be connected and closed, and
let Cy and C3 be quasi-components of f=1(Q). For every i € {1,2} take points
yi € f(C;) and choose points #; € C; such that f(z;) = y;. By continuity of
[ the set f=1(Q) is a closed subset of X, and therefore it has property (M) by
assumption . Thus its quasi-components coincide with components; in particular,
C1 and Cy are components of f~1(Q). Further, continuity of f implies that the sets
J7H(f(x;)) are closed subsets of f=1(Q). If the set f~1(Q) is connected between
{z1} and f=1(f(xz2)), then property (M) applied to f~1(Q) implies that there is
a point x5 € f~1(f(x2)) such that f=1(Q) is connected between {r;} and {x3}.
By the definition of a quasi-component we infer that the points z; and 23 are in
the same quasi-component of f~1(Q), so z} € Cy. Since f(z}) = f(x2) = y2, and
since yo is an arbitrary point of C, we see that f(C2) C f(Ch). If the set f~1(Q)
is connected between {zs} and f=1(f(z1)), we get the opposite inclusion in the
same way. (I

As a consequence of Statement 1.8 we get a corollary.

3.2. Corollary. For mappings f : X — Y between compact Hausdorff spaces X
and Y conditions (SC1) - (SC3) are equivalent.

3.3. Corollary. For a mapping f : X — Y between continua X and Y each of
conditions (SC1) - (SC3) is equivalent to semi-confluence of f.

3.4. Questions. Assume a mapping f : X — Y between topological spaces X
and Y has compact point inverses. Does a) (SC2) imply (SC1), b) (SC3) imply
(SC2)?

3.5. Proposition. Let f: X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (Cl) implies (SC1); (C2) implies (SC2); (C3) implies (SC3).

(b) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of
the space X has property (M), (in particular if X and Y are compact), then each
of conditions (C1) - (C3) implies each of (SC1) - (SC3).

Proof. (a). The first two implications are consequences of the definitions. To show
the third one fix arbitrary points z; and x5 in f=1(Q). Putting y = f(x2) we see

that f=1(Q) is connected between {z1} and f~!(y) by (C3) and Statement 1.1.
(b) follows from (a) and from Theorems 2.1 and 3.1. O

3.6. Example. There exist a metric space X and a surjective mapping f : X —

[0, 1] which satisfies condition (C2) (thus (SC2)) but not (SC1) (thus not (C1)).

Proof. Denote by € the middle-third Cantor set in the closed unit interval [0, 1].
In the Cartesian coordinates (x,y) in the plane R? for each n € N put I, =
{(z,1/n) 2 €]0,1]} and Iy = {(#,0) : x € € }, and define

X =N :ne{0}uny.

Let ¢ : € — [0,1] be the Cantor-Lebesgue mapping of € onto [0,1] (see e.g.
[E], 3.2. B, p. 146; [W], p. 35) and denote by ¢* : [0,1] — [0, 1] the monotone
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extension of ¢ (i.e. ¢*|% = ¢ and ¢* is constant on each component of [0, 1]\%).
Define a mapping f : X — [0, 1] by

p(z) if (x,y) € Iy,
f(@y) =19 ", .
o*(x) if (x,y)€l, forneN.
Let a connected closed nonempty subset @ of [0,1] be given. The set f~1(Q)
has countably many quasi-components €}, where n € {0}ulN, such that

C, CI, foreach ne{0jUN.

If n € N the sets (), are continua, so they coincide with the components of
F~HQ), while Cy is a closed, but in general not connected, subset of Iy. Each
singleton {(z,0)} € Cy forms a separate component of f~1(@Q). Further, by the
definition of the mapping f we have f(C,) = @ for each n € {0} UN, so f
satisfies (C2) (and, by Proposition 3.5 (a), also (SC2)). If Q@ = [0,1/2], then the
singletons {(0,0)} and {(1/3,0)} are two components of f=(Q), and we see that
FH{(0,0)}) = {0} and f({(1/3,0)}) = {1/2}, which shows that f does not satisfy
(SC1) (and consequently, by Proposition 3.5 (a), it does not satisfy (C1)). O

3.7. Remark. The above Example 3.6 shows that (C2) does not imply (C1) and
that (SC2) does not imply (SC1). Furthermore, note that since f satisfies (C2),
it satisfies (C3) by Theorem 2.1 (b), and that the set f=1([0,1/2]) is an inverse
closed subset of the space X which does not have property (M), so the corre-
sponding assumption is essential in Theorem 2.1 (c). Finally, since X of Example
3.6 is Hausdorff while not compact, the same example shows that compactness is
indispensable in Corollaries 2.2 and 3.2.

4. JOINING MAPPINGS.

This class of mappings f : X — Y between arbitrary topological spaces X and
Y can be defined by the following conditions.

(J1) For each connected closed nonempty subset @ of ¥ and for every two com-
ponents C7 and C5 of the inverse image f~1(Q) we have f(C1)N f(Ca) # 0.

(J2) For each connected closed nonempty subset @ of ¥ and for every two quasi-
components C7 and Cs of the inverse image f~1(Q) we have f(C1)N f(C2) #
0.

(J3) For each connected closed nonempty subset @ of ¥ and points 1 and #2 in
J7HQ) there exists a point y € @ such that f~1(Q) is connected between
{z1} and f~1(y) and between {z2} and f~1(y).

4.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (J1) implies (J2).

(b)  (J2) implies (J3) .
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(¢) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of
the space X has property (M), then (J3) implies (J1).

Proof. (a). Apply Statement 1.3.

(b). Assume (J2) and let @, #; and z2 be as in (J3). Denote by €y and Cs
the quasi-components of f=1(Q) that contain the points x; and x5 respectively.
Then f(C1)N f(C2) # 0. Choose a point y in the set f(Cy) N f(C2). Then Cy and
C5 intersect f~1(y), whence we conclude by Statement 1.4 that condition (J3) is
satisfied.

(c). Assume (J3). Let a nonempty subset ¢ of Y be connected and closed, and let
C' and C5 be components of f_l(Q) Choose points 1 € C and x4 € C5. Let y be
a point of @ as in (J3). Since the sets f~(Q) and f~'(y) are closed by continuity
of f and since f=1(Q) as a closed and inverse set has property (M) by assumption,
then by Statement 1.8 the components C; and C5 are quasi-components of f~1(Q),
and there are points #} and 2% in f~!(y) such that f=1(Q) is connected between
{x1} and {27} as well as between {x2} and {z%}. By the definition of a quasi-
component we infer that 3 € Cy and % € Cs. Since f(x}) = f(z}) = y, it follows
that y € f(C1) N f(Cq) # 0, and thus (J1) is proved. O

4.2. Corollary. For mappings f : X — Y between compact Hausdorff spaces X
and Y conditions (J1), (J2) and (J3) are equivalent.

4.3. Corollary. For a mapping f : X — Y between continua X and Y each of
conditions (J1), (J2) and (J3) is equivalent to the condition that f is joining.

4.4. Questions. Assume a mapping f : X — Y between topological spaces X
and Y has compact point inverses. Does a) (J2) imply (J1), b) (J3) imply (J2)7?

4.5. Proposition. Let f: X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (SC1) implies (J1); (SC2) implies (J2); (SC3) implies (13).

(b) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of the
space X has property (M), (in particular if X and Y are compact), then each of
conditions (SC1) - (SC3) implies each of (J1) - (13).

Proof. (a). The first two implications are consequences of the definitions. To
show the third one assume (SC3) and consider two cases. If f=1(Q) is connected
between {1} and f=1(f(x2)), put y = f(x2), and observe that since z5 € f~1(y),
the set f=1(Q) is connected between {z2} and f~1(y) simply by definition. The
other case, if f=1(Q) is connected between {2} and f=1(f(z1)), is symmetric to
the previous one.

(b) follows from (a) and from Theorems 3.1 and 4.1. O

4.6. Remark. The mapping f : X — [0, 1] of Example 3.6 satisfies (SC2) and
so it does (J2) by Proposition 4.5 (a). Using the same components {(0,0)} and
{(1/3,0)} of f=1([0,1/2]) it can be observed that f does not satisfy condition (J1).
Thus (J2) does not imply (J1), and again, similarly as in Remark 3.7, the same
example shows that the assumption concerning property (M) in Theorem 4.1 (c¢)
as well as compactness in Corollary 4.2 are essential.
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5. WEAKLY CONFLUENT MAPPINGS.

Weak confluence of a mapping f : X — Y between topological spaces can be

formulated as follows.

(WC1) For each connected closed nonempty subset @ of ¥ there is a component
of the inverse image f~!(Q) which is mapped onto @ under f.

(WC2) For each connected closed nonempty subset @ of Y there is a quasi-
component of the inverse image f~1(Q) which is mapped onto @ under
f

(WC3) For each connected closed nonempty subset ¢ of Y there is a point = €
F71(Q) such that for each point y € @ the set f~!(Q) is connected
between {z} and f~1(y).

5.0. Remark. Note that condition (WC2) is just (w') of [LT], p. 1337 and (w.c.)
of [G], p. 113, as well as (WC3) coincides with (w) of [LT], p. 1336.

Using the same argument as in the proofs of previous theorems one can show
the following theorem and corollaries. Details are left to the reader.

5.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (WC1) implies (WC2).

(b)  (WC2) implies (WC3).

(¢) If both X and Y are Hausdorfl spaces and if each inverse closed subset of
the space X has property (M), then (WC3) implies (WC1).

5.2. Corollary. For mappings f : X — Y between compact Hausdorff spaces X
and Y conditions (WC1), (WC2) and (WC3) are equivalent.

5.3. Corollary. For a mapping f : X — Y between continua X and Y each
of conditions (WC1), (WC2) and (WC3) is equivalent to weak confluence of the

mapping f.
The following result is known (see [LT], Corollary 1.4, p. 1337).

5.4. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y such that f~1(y) is compact for each y € Y. Then conditions
(WC2) and (WC3) are equivalent.

5.5. Question. Does (WC2) imply (WC1) for surjective mappings f : X — YV
with compact point inverses between topological spaces X and Y7

Recall that compactness of point inverses is an indispensable assumption in
Theorem 5.4, i.e., condition (WC2) is essentially stronger than (WC3); for details
see Remarks on p. 1337 of [LT]. Another example showing this is constructed as
Example 3.5 of [LT], p. 1342. Since the example is needed for further purposes, we
recall it here for the reader convenience. Namely, the following is known.

5.6. Example. There exists a metric space X and a mapping f : X — [0,1]
such that the sets f=1(0) and f=1(1) are degenerate, each quasi-component of
X is compact and none of them is mapped by [ onto [0,1]. Moreover, for each
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connected nonempty subset () of [0,1] there is a point * € f~(Q) such that for
each point y € @) the set f~1(Q) is connected between {z} and f~1(y).

Proof. In the Cartesian coordinates (z,y) in the plane put
X ={(0,0),(L,0)}u{(27",0) :n e N}U{(1-27",0) : n € N}
ulJ {2 ee27 127"} in e}
and define f: X — [0,1] by f((x,y)) = = for (z,y) € X.
To see interrelations between conditions (SC1), (SC2) and (SC3) from one side
and conditions (WC1), (WC2) and (WC3) from the other, we begin with an ex-

ample.

5.7. Example. There exist a locally compact, arcwise connected metric space
X and a surjective mapping f : X — [0,1) which satisfies condition (SC1) (thus
(SC2) and (SC3)) but not (WC3) (thus neither (WC1) nor (WC2)).

Proof. In the Cartesian coordinates (z,y) in the plane R?, for each n € N put
Jo ={(z,1/n):x €[0,1—1/n]} and Jo={(0,y):y € (0,1]},

and define

X=J{/n nefoyuny.

Thus X is a locally compact and arcwise connected subset of the plane. Further,
let a mapping f: X — [0,1) be defined by f((z,y)) = # for each point (z,y) € X.
The reader can verify that f satisfies the condition (SC1), whence (SC2) and (SC3)
follow by Theorem 3.1 (a) and (b). To see that (WC3) does not hold let us take
@) = [1/2,0). Then putting

Kn={(z,1/n): 2z €[1/2,1=1/n]} C J, foreach neN\{l}

we have f~3Q) = [U{K, : n € N\{1} }, and we see that the sets K, are quasi-
components (and components) of f=(Q). Thus for each point p € f~1(Q) there
is an index m € N\{l} such that p = (x,1/m) € K,,. Taking a point ¢ €
(1—1/m,1) C[0,1) we get f=(q) = {(x,y) € X : y = ¢}. Putting

A={(z,y) Ef_l(Q) :1/m<y} and B={(zy) € f_l(Q) 1/m >y}
we see that
peA fHe9cCcB, AnB=0, fYQ)=AUB

and that A and B are simultaneously closed and open in f=1(Q). Thus f~*(Q)
is not connected between {p} and f~1(q), so (WC3) is not satisfied, whence it
follows that also (WC1) and (WC2) are not, by Theorem 5.1 (a) and (b). O
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Note that neither the domain nor the range space of the mapping f of the
above example is compact. Maékowiak has shown (see [M], Theorem 3.8, p. 13)
that for metric continua X and Y each semi-confluent mapping from X onto Y is
weakly confluent. The proof presented there is valid for compact Hausdorff spaces
as well. Since for these spaces conditions (SC1), (SC2) and (SC3) are equivalent by
Corollary 3.2, as well as conditions (WC1), (WC2) and (WC3) are equivalent by
Corollary 5.2, we have the following proposition, part (a) of which is a consequence
of Example 5.7, and part (b) is just Mackowiak’s result mentioned above, and
formulated in a general setting.

5.8. Proposition. Let f: X — Y be a surjective mapping between topological

spaces X and Y. Then:

(a) Every of (SC1), (SC2) and (SC3) implies no one of (WC1), (WC2) and (WC3).

(b) Ifboth X andY are compact Hausdorff spaces, then each of conditions (SC1)
- (SC3) implies each of (WC1) - (WC3).

One can ask if the implication from semi-confluence to weak confluence holds
for larger classes of spaces then compact ones. Remarks below are related to this
question.

5.9. Remark. (a) Note that both spaces X and Y in Example 5.7 are locally
compact, so compactness cannot be relaxed to local compactness.

(b) Tt can be verified that closed subsets of the range space X in Example 5.7
have property [M] (and therefore their quasi-components coincide with compo-
nents by Statement 1.8), so these properties are not strong enough to show the
implication in matter.

(¢) Since compactness is an invariant under continuous functions, it is enough to
assume in Proposition 5.8 (b) only that X is compact. So a question can be asked
whether the discussed implication holds if only the range space Y is compact. A
negative answer i1s shown by an example below.

5.10. Example. There exist a locally compact, arcwise connected metric space
X, a metric continuum Y and a surjective mapping f : X — Y which satisfies

condition (SC1) (thus (SC2) and (SC3)) but not (WC3) (thus neither (WC1) nor
(WC2)).

Proof. Both spaces X and Y will be constructed in the plane R2 Given two
points p and ¢ in R?, we let pq to denote the straight line segment joining p with
q. We describe the continuum Y first. In the Cartesian coordinates (#,y) in the
plane, for each n € NN put

e=(=1,0), v=1(0,0), eo=(1,0), en=(1,1/(n+1)),
Yn:eeOUU{vek:kE{l,...,n}} and Y:U{Yn:nEN}.

Thus each Y}, i1s a tree with n 4+ 2 end points, and Y is a continuum which is
homeomorphic to the well-known harmonic fan (see e.g. [HY], Figure 3-5, p. 109).
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Now we will construct the space X. To this aim for each n € N let ¢, denote
the translation of the plane R? along the y-axis of n units up, i.e., the parallel
displacement by the vector (0,n). Put X' = {(—1,y) : y > 0} and, for each n € |
let X, =t,(Yy). Define

X=X U X, ineny,

and let f : X — Y be described as follows. The partial mapping f|X’ shrinks
X' to its initial point e. For each n € N the partial mapping f|X,, moves back
X, onto Yy, ie., fIX, = (¢n] X))t 0 X — Yy, Thus f(X’) = {e}, and for each
point (z,y) € X,, C X' we have f((z,y)) = (z',¢'), where ' =z and v =y — n.
One can verify that all the required conditions are satisfied. In particular, taking
Q = {(z,y) €Y : 0 <y < 1/2} we see that none component of f~1(Q) is
mapped onto @ under f, so f does not satisfy (WC1). Further, for each point
p € Xm N f7HQ) for some m € N one can take a point ¢ € (Yp11\Ym) N @ such
that f=1(Q) is not connected between {p} and f~!(q), and therefore condition
(WC3) is not satisfied. d

5.11. Remark. Observe that each closed subset of the domain space X of Exam-
ple 5.10 has property (M). Thus compactness of X in the implication of Proposition
5.8 (b) cannot be weakened to property (M) for closed subsets of the space X.

5.12. Remark. No example does exist of a mapping f: X — Y with (SC1) and
without (WC3) for which ¥ = [0, 1]. Indeed, let @ be a connected closed nonempty
subset of [0, 1]. Then @ = [a, b] with a < b. Let C,, and C be components of f~1(Q)
such that @ € f(Cy) and b € f(C}). Then by (SC1) we have either f(C,) C f(Cy)
or f(Cy) C f(Cy) and thus in any case both end points a and b are in the image
of one component of f~1(Q), whence (WC1) follows. The above observation can
be generalized to get a result below. Before we formulate it, we recall a needed
concept. A connected closed subset S of a space is said to be irreducible about a
finite set if there exists a finite set F' C S such that no connected closed proper
subset of S contains F'. In particular, if F' consists of some two points a and b only,
then we say that S is irreducible between a and b, or shortly that it is irreducible.

5.13. Proposition. Let f: X — Y bhe a surjective mapping between topological
Hausdorff spaces X and Y. If Y is compact and if each connected closed nonempty
subset of Y is irreducible about a finite set, then

(a) (SC1) implies (WC1
(b) (SC2) implies (WC2

Proof. In both cases (a) and (b) the proof is the same. We shall argue for (a).
So, assume (SC1) and let @ be a connected closed nonempty subset (i.e. a sub-
continuum) of Y. Then @ is irreducible about a finite set, say {y1,...,yn}. Let
C1 and C3 be the components of f~1(Q) such that y; € f(C1) and yo € f(Ca).
Then by (SC1) we have either f(C1) C f(C2) or f(C3) C f(C1), and thus in
any case both points y; and ys are in the image of one component of f~1(Q).
Label this component C4 » and assume that for some k € {1,2,...,n} a compo-

nent C 5 5 of f71(Q) has been found such that {y1,...,yx} C f(C1 2 ). Let

),.
)
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Cr41 be the component of f71(Q) such that yz11 € f(Crs1). Again by (SC1) we
have either f(Cry1) C f(Cr2,.. x) ot f(Cr2,.. &) C f(Cry1). In the either case all
k+1 points y1, ..., Yk, Yk+1 are in the image of one component of f~1(Q), which is

then labelled C 2. ;4+1. Thus by induction we infer that there exists a component
Ch2,.nof f7HQ) such that

y2yeeey

Wi, Ut Cf(Cra,n),

whence it follows from irreducibility of @ about {yi,...,y,} that

f(Cra0) =@,

i.e., that (WC1) holds. O

5.14. Corollary. Let f : X — Y be a surjective mapping between topological
Hausdorff spaces X and Y . If each inverse closed subset of the space X has prop-
erty (M), if Y is compact and if each connected closed nonempty subset of Y is

irreducible about a finite set, then (SC3) implies (WC1), (WC2) and (WC3).

Proof. Condition (SC3) implies (SC1) by Theorem 3.1 (¢). Further, (SC1) implies
(WC1) by Proposition 5.13 (a). Finally (WC1) implies (WC2) and (WC3) by
Theorem 5.1 (a) and (b). O

5.15. Remark. It follows from Example 5.10 that the assumption concerning the
structure of connected close subsets of Y, viz. finiteness of sets connected closed
subsets of Y are irreducible about, is essential in Proposition 5.13.

6. PSEUDO-CONFLUENT MAPPINGS.

Pseudo-confluence of a mapping f : X — Y between topological spaces can
be formulated by the following three conditions which are analogous to conditions
considered in the previous sections.

(PC1) TFor each irreducible connected closed subset @) of Y there is a component
of the inverse image f~1(Q) which is mapped onto ) under the mapping
f

(PC2) Tor each irreducible connected closed subset @ of Y there is a quasi-
component of the inverse image f~1(Q) which is mapped onto @ under
the mapping f.

(PC3) TFor each irreducible connected closed subset @ of ¥ and points y; and ys
in @ the set f=1(Q) is connected between f~1(y;) and f=1(y2).

Besides, let us consider two conditions discussed in [LT], p. 1336-1337.

(p) For each connected closed nonempty subset @ of Y and for each two points
y1 and ys in @ the set f=1(Q) is connected between f~1(y;) and f=1(y2).

(p") For each connected closed nonempty subset @ of ¥ and for each two points
y1 and ys in @ there is a quasi-component C' of the inverse image f~(Q)

such that {y1,y2} C f(C).
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6.0. Remark. For confluent as well as for weakly confluent mappings some of the
considered conditions (C1) - (C3) and (WC1) - (WC3) were the same as certain
conditions in [LT] and [G] — see Remarks 2.0 and 5.0. It is not the case for pseudo-
confluent mappings. The reason for this is that the starting point for formulation
of (PC1) - (PC3) was not the original definition of a pseudo-confluent mapping as
given in [LT], p. 1336 using the condition (p), but another condition, formulated
in Theorem 5.3 of [LT], p. 1346, which was shown to be equivalent to (p) for
mappings from a compact Hausdorff space X onto a compact metric space Y, and
which was taken in [M], (iii), p. 25, as the definition of pseudo-confluent mappings
between metric continua.

6.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (PC1) implies (PC2).

(b)  (PC2) implies (PC3).

(¢) (p') implies (p).

(d)  (p) implies (PC3).

(e)  If the mapping f is such that f~'(y) is compact for each y € Y, then (p)
implies (p').

(f) If the mapping [ is closed, if both X and Y are Hausdorfl spaces and if
each inverse closed subset of the space X has property (M), then (PC3) implies
(PCI).

Proof. (a). Apply Statement 1.3.

(b). Assume (PC2). Take an irreducible connected closed subset @ of ¥, and
let C' be a quasi-component of f=1(Q) with f(C) = Q. Let y; and ys be arbitrary
points of @. Then f=1(y1)NC # 0 # f~1(y2)NC, whence we conclude by Statement
1.4 that f=1(Q) is connected between f~1(y;) and f~1(y2). Thus (PC3) holds.

(c). Apply Statement 1.4.

(d). This implication is obvious.

(e). This is known, see [LT], Corollary 1.4, p. 1337.

(f). Assume condition (PC3) is satisfied. Let a connected closed subset @ of Y be
irreducible between points y; and ys. Then f~1(Q) is connected between f~=1(y;)
and f~!(y2). Again by continuity of f the sets f=1(@Q), f~*(y1) and f~1(y2) are
closed. Since f~1(Q) is an inverse set, it has property (M) by assumption, whence
if follows by Statement 1.9 that there is a component C' of f~1(Q) such that

FFHynC#0# () NC.

So, {y1,y2} C f(C) C Q. Note that f(C') is connected and, since the mapping f
is closed, it is also closed. Therefore by irreducibility of @ we infer that f(C) = Q,
and so the proof is finished. a

6.2. Corollary. For mappings f : X — Y between compact Hausdorff spaces X
and Y conditions (PC1), (PC2) and (PC3) are equivalent, as well as conditions (p)
and (p’) are equivalent, and every of (p) and (p') implies every of (PC1), (PC2)
and (PC3).

The following result is known (see [LT], 5.3, p. 1346).
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6.3. Theorem. Let a mapping f : X — Y map a compact Hausdorff space X
onto a compact metric space Y. Then condition (PC1) implies (p).

6.4. Corollary. Let a mapping f : X — Y map a compact Hausdorff space X
onto a compact metric space Y. Then conditions (PC1), (PC2), (PC3), (p) and
(p’) are equivalent.

6.5. Corollary. For a mapping f : X — Y between continua X and Y each of
conditions (PC1), (PC2), (PC3), (p) and (p') is equivalent to pseudo-confluence
of f.

6.6. Remark. Note that the mapping f of Example 5.6 satisfies the condition
(p) (thus (PC3)), while not (PC2). Hence (p) (and (PC3)) implies neither (PC1)
nor (PC2). Taking y1 = 0 and y2 = 1/2 we see that there is no quasi-component
C' of X such that f(C') contains both y; and ya, so neither (p) nor (PC3) implies
(p"). Tt follows that compactness of point inverses is an indispensable assumption
in the implication (e) of Theorem 6.1.

6.7. Example. There exists a metric space X and a mapping f : X — [0, 1] such
that the condition (p') is satisfied, each quasi-component of X is compact and
none of them is mapped by f onto [0, 1].

Proof. In the Cartesian coordinates (z,y) in the plane R? for each n € N put
Lp={(z,27"):2€[0,1—=27"]} and Ry,={(,37"):2ze[l-37"1]}.

Let X = {(0,0),(1,0)} UU{(Ln URy,) : n € N} and define f : X — [0,1] by
f(z,y)) =z for (2,y) € X. O

6.8. Remark. Example 6.7 shows that (p’) does not imply (PC2), so it does not
imply (PC1), too.

In connection with implications (e)and (f) of Theorem 6.1 we have the following
questions.

6.9. Questions. Assume a mapping f : X — Y between topological spaces X
and Y has compact point inverses. Does a) (PC2) imply (PC1), b) (PC3) imply
(PC2)?

6.10. Questions. Assume that a mapping f : X — Y between Hausdorff spaces
X and Y is closed, and that each inverse closed subset of the space X has property
(M). Does (p) imply (p') 7
6.11. Proposition. Let f: X — Y bhe a surjective mapping between topological
spaces X and Y. Then:

(a) (WC2) implies (p'); (WC3) implies (p) .

(b)  (WC1) implies (PC1); (WC2) implies (PC2); (WC3) implies (PC3).

(¢) Ifboth X andY are Hausdorff spaces and if each inverse closed subset of

the space X has property (M), (in particular if X and Y are compact), then each
of conditions (WC1) - (WC3) implies (p), (p') and each of (PCl1) - (PC3).

Proof. (a). The first implication is obvious. The second one is stated in [LT], p.
1336.
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(b). The first two implications are consequences of the definitions. The third
one follows from (a) and from (d) of Theorem 6.1. We show a direct proof of this
implication. Assume (WC3) and suppose on the contrary that (PC3) does not
hold. Then there are an irreducible connected closed subset () of Y and points
y1 and y2 of @ such that f=1(Q) is not connected between f~1(y;) and f=1(y2).
Thus there is a closed and open subset F' in f~1(Q) such that f~!(y;) C F and
Fnf~ys) = 0. By (WC3) there is a point z € f~1(Q) such that f~1(Q) is
connected between {x} and f~!(y;) for each point y € Q. In particular f=(Q)
is connected between {z} and f=1(y;), so each closed and open subset of f=1(Q)
containing f~1(y;) must contain {z}. Thus # € F'. Then the set f~1(Q)\F is both
closed and open in f~1(Q), it contains f~!(y2) without intersecting the singleton
{z}. Consequently f=1(Q) is not connected between {z} and f~!(y2), contrary to
the definition of the point z.

(¢). By Theorem 5.1 conditions (WC1) - (WC3) are mutually equivalent. By
Proposition 6.10 (a) and (b) each of them implies both (p) and (p’) as well as
(PC1) - (PC3). O

7. MONOTONE MAPPINGS.

A mapping f : X — Y between metric continua X and Y is called monotone
provided that the inverse image of each subcontinuum of Y is a subcontinuum of
X. Obviously, each monotone mapping between continua is confluent. Monotoneity
of a mapping f : X — Y between topological spaces X and Y can be defined in
several ways. Consider the following ones.

(M1) For each connected closed subset @ of Y the inverse image f~(Q) is con-
nected.

(M2) For each connected closed subset @ of Y the inverse image f~1(Q) consists
of one quasi-component.

(M3) For each connected closed subset @ of Y and points #; and 23 in f=1(Q)
the set f=1(Q) is connected between {1} and {z2}.

(M4) For each connected closed subset @ of Y the inverse image f~1(Q) is
connected;
(Kuratowski [K], p. 131).

(M5) For each point y € Y the inverse image f~1(y) is connected;
(Engelking [E], p. 358; Hocking and Young [HY], p. 137).

(M6) For each point y € Y the inverse image f~!(y) is continuum;
(Whyburn [W], p. 70 and p. 127).

Interrelations between the above conditions are collected in the following theo-
rem.

7.1. Theorem. Let f : X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) (M1), (M2) and (M3) are equivalent.

(b) The following implications hold and none of them can be reversed:

(MG) — (M5) — (M4) — (Ml) .
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(¢) If'Y is a Ty-space, then (M1) implies (M5).

(d) If the mapping f is either open or closed, then (Mb5) implies (M4).

(e) If X and Y are compact Hausdorff spaces, then all six conditions (M1) -
(M6) are equivalent.

Proof. (a). Apply Statement 1.2.

(b). All three implications are obvious. We show that no other implication
between the considered conditions is possible in general. Let S* stand for the unit
circle, i.e., the set of complex numbers of module 1. The mapping f : [0,1) — S*
defined by f(t) = exp(2wit) for ¢ € [0,1) satisfies (M6) (thus (Mb)), while neither
(M4) nor (M1). Therefore (M6) and (M5) do not imply (M4) or (M1). The mapping
f of the real half line [0,+00) onto [0, 1] defined by f(t) = ¢ for ¢t € [0,1] and
f(t) = 1fort > 1 satisfies (M4) (thus (M5) and (M1)) while not (M6). To see that
(M1) does not imply (M4) consider the following example.

In the Cartesian coordinates (z,y) in the plane R? put a = (=2,-1), b =
(0,—1), ¢ = (0,1), and let ab and bc stand for the straight line segments. Putting
S ={(z,y) €R?:y =sin(1/z) and = € (0, 1]}, define X = abU S and Y = beUS.
Let a mapping f : X — Y be defined by the conditions: f(a) = ¢, f(b) = b,
flab : ab — be is linear, and f|S : S — S is the identity. Then both X and
Y are connected subsets of the plane, Y is compact, and f is one-to-one. It can
be verified that f satisfies (M1). But {c¢} U S is a connected subset of ¥ and
F71{c}uS) ={a} US, so (M4) does not hold.

(¢). Singletons are closed in Tj-spaces.

(d). See [E], Theorem 6.1.29, p. 358. Compare [K], §46, I, Theorem 9, p. 131.

(e). This is a consequence of (b), (¢) and (d). d

7.2. Proposition. Let f: X — Y be a surjective mapping between topological
spaces X and Y. Then:

(a) Fach of conditions (M1) - (M4) implies each of (C1) - (C3).

(b) If the mapping f is either open or closed, then each of (Mb) and (M6)
implies each of (C1) - (C3).

=

Proof. (a). Since (M1) obviously implies (C1), this is a consequence of the The-
orems 7.1 (a) and (b) and 2.1 (a) and (b).
(b). This follows from Theorem 7.1 (d) and (b) and from (a) above. O
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