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ON THE REGULARITY OF GROUP ALGEBRAS

A. A. Bovbi aND T. P. LANGI

ABSTRACT. We describe n-regular and n-weakly regular group algebras. KG is

n-regular if and only if one of the following conditions holds:

(1) charK = 0 and G is locally finite; or

(2) charK = p, G is locally finite, AP(G) is finite and contains all the elements of
G of p-power order and rad(KAP(G))"” = 0.

INTRODUCTION

As it is well-known, a ring is said to be Neumann regular if the equation aza = a
has a solution z € R for any a € R, or is characterized so that every finitely gener-
ated left ideal of R is generated by an idempotent. There are several generalizations
of regularity, for instance, n-weakly regular [4] and n-regular rings [1].

Definition. A ring R is called n-weakly regular if @ € aRa"™R holds for any
a € R.

Obviously, a ring R is n-weakly regular if and only if the equation aza™y = a
can be solved in R for any a € R.

Definition. If for any ay,...a, € R there exist x1,...x, € R with
R(a; — a1zya1)R ... R(an — antpan )R =0

then the ring R is called n-regular.

The aim of this paper is to describe n-weakly regular and n-regular group
algebras. Recall that a 1-regular ring is precisely a Neumann regular ring, and
group rings satisfying this property were described by Auslander [2], Connel [3]
and Villamayor [7]: KG is Neumann regular if and only if G is a locally finite
group, K 1s a Neumann regular ring and the order of any torsion element of G is
wmvertible in K.
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On n-weakly regular group rings we know only some elementary properties [6].

1. n-REGULAR GROUP ALGEBRAS

Let A(G) denote the union of the finite conjugacy classes of (. Clearly, the
subgroup AP(() generated by the p-elements of A(G) is normal in G.

Let N(KG) be the union of the nilpotent ideals of K G and let rad( K G) denote
the prime radical of KG. In the proof of the theorem we use the following result
of Passman [5, Theorem 8.1.9 and Theorem 8.1.12]: if K is a field of characteristic
p > 0, then the ideal N(K (@) is nilpotent if and only if the subgroup AP(G) is
finite. Then N(KG) = rad(KAP(G))KG.

Theorem 1. Let K be a field. The group algebra K G is n-regular if and only
if at least one of the following conditions holds:
(1) charK = 0 and G is locally finite; or
(2) charK = p and
(a) G is locally finite,
(b) AP(() is finite and contains all the p-elements of G,
(¢) rad(KAP(G))” =0.

Proof. Let KG be an n-regular group algebra. Then for an arbitrary a € KG
there exist elements z1,...,z, € KG with

KG(a—ar10)KG .. . KG(a — axna)KG = 0.

It follows that for every prime ideal P of K'(G there exists ¢ with ¢ — az;a € P and
let I; denote the intersection of all the prime ideals P with a — ax;a € P. Clearly,
we have rad(KG) = N?_,I;. By induction on ¢ we will prove that there exists an
element b, € KG with a — abia € ﬁﬁzlfi. This 1s true for ¢t = 1 and we assume
that a — absa € ﬁﬁzlfi. Then

a—a(bi+ 241 —braxii1)a = (a—abia)(1—zr41a) = (1 —aby)(a—axiy1a) € ﬂz":'%[i

and byy1 = by + 2441 — brawy1. Thus KG/rad(KG) is a regular ring.
Now let ay,...,a, € rad(KG) and by, ..., b, € KG with

(1) KG(a1 — a1b1a))KG ... KG(ay — apbpan, ) KG = 0.
Since b;a; € rad(KG), the element b;a; — 1 has an inverse and by (1)
ajas...ap = (a1bra; —ay)(brag — 1)_1 coapbpa, — an)(bpa, — 1)_1 =0.

We obtain that rad(KG)" = 0.

Let charK = 0. Tt is well-known [5, Theorem 2.3.4] that K does not contain
nilpotent ideals and rad(KG) = 0. Thus KG is a regular ring and by Auslander-
Connel-Villamayor’s theorem G is locally finite.
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Let charK = p. Then N(KG) is a nilpotent ideal and by Passman’s theorem
the subgroup A?((G) is finite. Let Z(AP((G)) denote the ideal generated by all u—1,
u € AP((@). Then

K(G/AP(G)) = KGJI(AP(G)).

Since the factorgroup G/AP(G) has no finite normal subgroups of order divisible
by p, by Passman’s theorem [5, Theorem 4.2.13 | KG/AP(G) does not contain
nilpotent ideals. Thus the prime radical of K is contained in Z(AP((G)) and
KG/I(AP(G)) is the homomorphic image of KG/rad(KG). We conclude that
K(G/AP(G)) is a regular ring, and by Auslander-Connel-Villamayor’s theorem
the group G/AP(G) is locally finite and does not contain elements of order p.
Since AP(() is a finite group, it implies that G is also locally finite. Clearly,
rad(KG) = N(KG) = rad(KAP(G))KG. We obtain that rad(KAP(G))* = 0
and the necessity of the conditions of the theorem is proved.

If char K = 0 and G is locally finite then by Auslander-Connel-Villamayor’s
theorem K G is a regular ring, and hence it is an n-regular ring.

Now suppose that K is of characteristic p and K G satisfies the conditions (a),
(b) and (¢). If a € KG and H = {(Supp(a), AP(G)), then the subgroup H is
finite, AP(G) = AP(H) and by Passman’s theorem N(KH) = rad(KAP(G))KH.
Since K H has a finite dimension, the radical rad(K H) is a nilpotent ideal and
KH/rad(KH) is a semisimple artinian ring. It is well-known that a semisimple
artinian ring i1s a regular ring and for the element a there exists * € K H with
ara —a € rad(KH) C N(KG). Tt is proved then that KG/N(KG) is a regular
ring.

If ai,...,a, € KG then for every a; there exists x; € KG with a;x;a; — a; €

N(KG). Since N(KG)™ =0, we conclude that
KG(a1 — a12101)KG .. . KG(an — antpan)KG =0

and KG is an n-regular ring.

2. n-WEAKLY REGULAR GROUP ALGEBRAS

A hamiltonian group is a non-abelian group in which every subgroup is normal.
Such groups G are characterized as follows: G is a direct product of an elementary
abelian 2-group F, an abelian torsion group A in which any element is of odd
order, and a quaternion group ¢ of order 8.

Theorem 2. Let K be a field and n > 2 a fixed natural number. The group
algebra K G is n-weakly regular if and only if at least one of the following conditions
holds:

(a) charK = p and G is an abelian torsion group containing no elements of order
p;
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(b) charK = 0 and G is an abelian torsion group, or a hamiltonian group G =
Q x E x A that in K A the equation x° 4+ y? 4+ 2% = 0 has only the trivial solution.

Proof. Let KG be n-weakly regular. Then K G does not contain nilpotent elments
and G is torsion. Indeed, in the contrary case there exists 0 # b € KG with b2 = 0
and we obtain a contradiction b € bRV R = 0. From n-weakly regularity we obtain
that if ¢ € G then (1 — g) = (1 — g)z for some z € KG(1 — ¢)" KG, and hence
(1—g)(z —1) =0. It is well-known that for an element ¢ of infinite order 1 — ¢ is
not zero divisior in K G, which implies that (G is a torsion group.

Clearly, if charK =pand h € Gisof order pthen 2 =14+ h+---+ APl isa
nilpotent element in K G because x? = pz = 0. We obtain that the characteristic
of the field K does not divide the order of any element of G.

Let H = (g | g" = 1) be a cyclic subgroup of G. Then the element
y=(14+...4+¢24+¢""Ye(1 — g) has the property y*> = 0 for any ¢ € (. Since
K G has no nilpotent elements, we have y = 0 and ¢ € Ng(H). We proved that
each cyclic subgroup 1s normal in G, and hence ( is either hamiltonian or abelian.

Assume that G is a hamiltonian group, and let K GG be of characteristic p. Then
the characteristic of the field K does not divide the order of any element of G,
and K G contains no nilpotent elements, which, by Sehgal’s result [8, Proposition
6.1.12], is impossible.

Now suppose that char K = 0. Then the quaternion group

Q=(a,b|a*=1,0"=a*bab' =a ")

is a subgroup of G, G = Q x E x A. Let (y1, Y2, y3) be a nontrivial solution of the
equation

(2) 4y +22=0

in KA. Put H ={(Q, Supp(y1), Supp(y2), Supp(ys)). Then H = @ x A1 and A is
a finite subgroup of A. By Artin-Wedderburn’s theorem we have

(3) KA =F& - -BF,

and
KH=¢a!_,FQ.

By (3) the equation (2) has a nontrivial solution («, 3,v) at least in one of the
fields F; and
r = ala—d®)+ B(a®b — b) + y(ab — a’b)

is a nilpotent element in K&, which is a contradiction.

In order to prove the converse, suppose that (a) holds. Then H = (Supp(a)) is
a finite group for any a € K, and hence K H is a semisimple artinian ring. By
Artin-Wedderburn’s theorem K H is a direct sum of fields. Obviously, K H is an
n-weakly regular group algebra, and K G is also an n-weakly regular ring.
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Now suppose that the condition (b) holds. Clearly, it is enough to prove the
statement for a finite group (. Because E is an elementary abelian 2-group, by
Artin-Wedderburn’s theorem

KE=K|1 & --¢ K,

where K; = K and
K A= @;l:leZ’.

It is easy to see that
I{G = 69;?:1 69;lzl F]ZQ

and
FiQ=Fp @ Fy @ Fyy® Py @ 5,

where S is the quaternion division algebra over F};. Thus K is n-weakly regular.

d
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