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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 289 { 306PRODUCT PRESERVING FUNCTORS OFINFINITE DIMENSIONAL MANIFOLDSAndreas Kriegl and Peter W. MichorTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. The theory of product preserving functors and Weil functors is partlyextended to in�nite dimensional manifolds, using the theory of C1-algebras.Table of contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2892. In�nite dimensional manifolds . . . . . . . . . . . . . . . . . . . 2903. Weil functors on in�nite dimensional manifolds . . . . . . . . . . . 2924. Product preserving functors from �nite dimensional manifoldsto in�nite dimensional ones . . . . . . . . . . . . . . . . . . . . 2981. IntroductionIn competition to the theory of jets of Ehresmann Andr�e Weil in [21] explaineda construction which is on the one hand more restricted than that of jets since itallows only for covariant constructions in the sense of category theory (contravari-ant in the sense of di�erential geometry), but is more 
exible since it uses moreinput: a �nite dimensional formally real algebra. Later it was realized that Weil'sconstruction describes all product preserving bundle functors on the category of�nite dimension manifolds. This was developed independently by [1], [4], less com-pletely by [13], and exposed in detail in chapter VIII of [6]. A jet-like approach toWeil's construction was given in [18] and used by Kol�a�r in [5] to discuss naturaltransformations. The purpose of this paper is to present some versions of thistheory in the realm of in�nite dimensional manifolds, in the setting of convenientcalculus as in [2], [10], [8].1991 Mathematics Subject Classi�cation : 58B99.Key words and phrases: product preserving functors, convenient vector spaces, C1-algebras.Supported by `Fonds zur F�orderung der wissenscahftlichenForschung, Projekt P 10037 PHY'.



290 ANDREAS KRIEGL, PETER W. MICHOR2. Infinite dimensional manifolds2.1. Calculus in in�nite dimensions. A locally convex vector space E iscalled convenient if for each smooth curve the Riemann integrals over compactintervals exist (this is a weak completeness condition). The �nal topology on Ewith respect to all smooth curves is called the c1-topology. A mapping between(c1-) open subsets of convenient vector spaces is called smooth if it maps smoothcurves to smooth curves. Multilinear mappings are smooth if and only if they arebounded. This gives a meaningful theory which up to Fr�echet spaces coincideswith any reasonable theory of smooth mappings. The main additional property iscartesian closedness: If U , V are c1-open subsets in and if G is a convenient vectorspace, then C1(V;G) is again a convenient vector space (with the locally convextopology of convergence of compositions with smooth curves in V , uniformly oncompact intervals, in all derivatives separately), and we haveC1(U;C1(V;G)) �= C1(U � V;G):Expositions of this theory can be found in [2], [10], [8], e.g. Real analytic andholomorphic versions of this theory are also available, [11], [7], [10].2.2. Manifolds. A chart (U; u) on a set M is a bijection u : U ! u(U ) � EUfrom a subset U � M onto a c1-open subset of a convenient vector space EU .For two charts (U�; u�) and (U� ; u�) on M the mapping u�� := u� � u�1� :u�(U��) ! u�(U��) for �, � 2 A is called the chart changing, where U�� :=U� \U� . A family (U�; u�)�2A of charts on M is called an atlas for M , if the U�form a cover of M and all chart changings u�� are de�ned on c1-open subsets.An atlas (U�; u�)�2A for M is said to be a C1-atlas, if all chart changingsu�� : u�(U��)! u�(U��) are smooth. Two C1-atlases are called C1-equivalent,if their union is again a C1-atlas for M . An equivalence class of C1-atlases iscalled a C1-structure on M . The union of all atlases in an equivalence class isagain an atlas, the maximal atlas for this C1-structure. A C1-manifold M is aset together with a C1-structure on it.2.3. A mapping f :M ! N between manifolds is called smooth if for each x 2Mand each chart (V; v) on N with f(x) 2 V there is a chart (U; u) onM with x 2 U ,f(U ) � V , such that v � f � u�1 is smooth. This is the case if and only if f � c issmooth for each smooth curve c : R!M .We will denote by C1(M;N ) the space of all C1-mappings from M to N .2.4. The topology of a manifold. The natural topology on a manifold M isthe identi�cation topology with respect to some (smooth) atlas (u� : M � U� !u�(U�) � E�), where a subset W � M is open if and only if u�(U� \ W ) isc1-open in E� for all �. This topology depends only on the structure, sincedi�eomorphisms are homeomorphisms for the c1-topologies. It is also the �naltopology with respect to all inverses of chart mappings in one atlas. It is also the�nal topology with respect to all smooth curves. For a (smooth) manifold we will



PRODUCT PRESERVING FUNCTORS 291require certain properties for the natural topology, which will be speci�ed whenneeded, like:(1) Smoothly Hausdor�: The smooth functions in C1(M;R) separate pointsin M .(2) Smoothly regular: For each neighborhood U of a point x 2M there existsa smooth function f : M ! R with f(x) = 1 and carrier f�1(Rn f0g)contained in U ; equivalently the initial topology with respect to C1(M;R)equals the natural topology.(3) Smoothly real compact: Any bounded algebra homomorphism C1(M;R)! R is given by a point evaluation; equivalently, the natural mappingM ! Hom(C1(M;R);R) is surjective.2.5. Submanifolds. A subset N of a manifoldM is called a submanifold, if foreach x 2 N there is a chart (U; u) of M such that u(U \N ) = u(U ) \ FU , whereFU is a c1-closed linear subspace of the convenient model space EU . Then clearlyN is itself a manifold with (U \N; u � U \N ) as charts, where (U; u) runs throughall submanifold charts as above.A submanifoldN ofM is called a splitting submanifold if there is a cover of N bysubmanifold charts (U; u) as above such that the FU � EU are complemented (i.e.splitting) linear subspaces. Then obviously every submanifold chart is splitting.2.6. Products. Let M and N be smooth manifolds described by smooth atlases(U�; u�)�2A and (V� ; v�)�2B , respectively. Then the family (U� � V�; u� � v� :U��V� ! E��F�)(�;�)2A�B is a smooth atlas for the cartesian product M �N .Beware, however, the manifold topology of M �N may be �ner than the producttopology, see [10]. If M and N are metrizable, then it is the product topology, by[10] again. Clearly the projectionsM pr1 �� M �N pr2��! Nare also smooth. The product (M � N; pr1; pr2) has the following universal prop-erty:For any smooth manifold P and smooth mappings f : P !M and g : P ! Nthe mapping (f; g) : P ! M � N , (f; g)(x) = (f(x); g(x)), is the unique smoothmapping with pr1 � (f; g) = f , pr2 � (f; g) = g.2.7. Lemma. [10] For a convenient vector space E and any smooth manifoldM the set C1(M;E) of smooth E-valued functions on M is again a convenientvector space with the locally convex topology of uniform convergence on compactsubsets of compositions with smooth curves in M , in all derivatives separately.Moreover, with this structure, for two manifoldsM , N , the exponential law holds:C1(M;C1(N;E)) �= C1(M �N;E):



292 ANDREAS KRIEGL, PETER W. MICHOR3. Weil functors on infinite dimensional manifolds3.1. A real commutative algebra A with unit 1 is called formally real if for anya1; : : : ; an 2 A the element 1 + a21 + � � �+ a2n is invertible in A. Let E = fe 2 A :e2 = e; e 6= 0g � A be the set of all nonzero idempotent elements in A. It is notempty since 1 2 E. An idempotent e 2 E is said to be minimal if for any e0 2 Ewe have ee0 = e or ee0 = 0.Lemma. Let A be a real commutative algebra with unit which is formally realand �nite dimensional as a real vector space.Then there is a decomposition 1 = e1 + � � �+ ek into all minimal idempotents.Furthermore A = A1�� � ��Ak, where Ai = eiA = R�ei�Ni, and Ni is a nilpotentideal.This is standard, see [6], 35.1, for a proof.3.2. De�nition. A Weil algebra A is a real commutative algebra with unit whichis of the form A = R � 1 � N , where N is a �nite dimensional ideal of nilpotentelements.So by lemma 3.1 a formally real and �nite dimensional unital commutativealgebra is the direct sum of �nitely many Weil algebras.3.3. Chart description of Weil functors. Let A = R�1�N be a Weil algebra.We want to associate to it a functor TA :Mf ! Mf from the category Mf ofall smooth manifolds modelled on convenient vector spaces into itself.Step 1. If f 2 C1(R;R) and �1 + n 2 R � 1 � N = A, we consider the Taylorexpansion j1f(�)(t) =P1j=0 f(j)(�)j! tj of f at � and we putTA(f)(�1 + n) := f(�)1 + 1Xj=1 f (j)(�)j! nj ;which is �nite sum, since n is nilpotent. Then TA(f) : A ! A is smooth and weget TA(f � g) = TA(f) � TA(g) and TA(IdR) = IdA.Step 2. If f 2 C1(R; F ) for a convenient vector space F and �1+n 2 R�1�N =A, we consider the Taylor expansion j1f(�)(t) =P1j=0 f(j)(�)j! tj of f at � and weput TA(f)(�1 + n) := 1
 f(�) + 1Xj=1 nj 
 f (j)(�)j! ;which is �nite sum, since n is nilpotent. Then TA(f) : A ! A 
 F =: TAF issmooth.Step 3. For f 2 C1(E;F ), where E, F are convenient vector spaces, we wantto de�ne the value of TA(f) at an element of the convenient vector space TAE =A 
 E. Such an element may be uniquely written as 1
 x1 +Pj nj 
 xj, where1 and the nj 2 N form a �xed �nite linear basis of A, and where the xi 2 E. Let



PRODUCT PRESERVING FUNCTORS 293again j1f(x1)(y) =Pk�0 1k!dkf(x1)(yk) be the Taylor expansion of f at x1 2 Efor y 2 E. Then we putTA(f)(1 
 x1 +Xj nj 
 xj) :== 1
 f(x1) +Xk�0 1k! Xj1;:::;jk nj1 : : :njk 
 dkf(x1)(xj1 ; : : : ; xjk)which is again a �nite sum. A change of basis in N induces the transposed changein the xi, namelyPi(Pj ajinj) 
 �xi =Pj nj 
 (Pi aji �xi), so the value of TA(f)is independent of the choice of the basis of N . Since the Taylor expansion ofa composition is the composition of the Taylor expansions we have TA(f � g) =TA(f) � TA(g) and TA(IdE ) = IdTAE .If ' : A! B is a homomorphism between two Weil algebras we have ('
F ) �TAf = TBf � (' 
E) for f 2 C1(E;F ).Step 4. Let � = �A : A! A=N = R be the projection onto the quotient �eld ofthe Weil algebra A. This is a surjective algebra homomorphism, so by step 3 thefollowing diagram commutes for f 2 C1(E;F ):A
E wTAfu� 
 E A 
 Fu � 
 FE wf FIf U � E is a c1-open subset we put TA(U ) := (�
E)�1(U ) = (1
U )� (N 
E),which is an c1-open subset in TA(E) := A
E. If f : U ! V is a smooth mappingbetween c1-open subsets U and V of E and F , respectively, then the constructionof step 3, applied to the Taylor expansion of f at points in U , produces a smoothmapping TAf : TAU ! TAV , which �ts into the following commutative diagram:U � (N 
E)[[[]pr1 TAU wTAfu � 
E TAVu� 
 F V � (N 
 F )���� pr1U wf VWe have TA(f � g) = TAf � TAg and TA(IdU) = IdTAU , so TA is now a covariantfunctor on the category of c1-open subsets of convenient vector spaces and smoothmappings between them.Step 5. Let M be a smooth manifold, let (U�; u� : U� ! u�(U�) � E�) be asmooth atlas of M with chart changings u�� := u� � u�1� : u�(U��) ! u�(U��).Then the smooth mappingsTA(u�(U��)) wTA(u��)u� 
 E� TA(u�(U��))u � 
E�u�(U��) wu�� u�(U��)



294 ANDREAS KRIEGL, PETER W. MICHORform again a cocycle of chart changings and we may use them to glue the c1-open sets TA(u�(U�)) = u�(U�)� (N 
E�) � TAE� in order to obtain a smoothmanifold which we denote by TAM . By the diagram above we see that TAM willbe the total space of a �ber bundle T (�A;M ) = �A;M : TAM !M , since the atlas(TA(U�); TA(u�)) constructed just now is already a �ber bundle atlas. So if Mis Hausdor� then also TAM is Hausdor�, since two points xi can be separated inone chart if they are in the same �ber, or they can be separated by inverse imagesunder �A;M of open sets in M separating their projections.This construction does not depend on the choice of the atlas. For two atlaseshave a common re�nement and one may pass to this.If f 2 C1(M;M 0) for two manifolds M , M 0, we apply the functor TA tothe local representatives of f with respect to suitable atlases. This gives localrepresentatives which �t together to form a smooth mapping TAf : TAM ! TAM 0.Clearly we again have TA(f � g) = TAf � TAg and TA(IdM ) = IdTAM , so thatTA :Mf !Mf is a covariant functor.3.4. Remark. If we apply the construction of 3.3, step 5 to the algebra A = 0,which we did not allow (1 6= 0 2 A), then T0M depends on the choice of theatlas. If each chart is connected, then T0M = �0(M ), computing the connectedcomponents ofM . If each chart meets each connected component ofM , then T0Mis one point.3.5. Theorem. Main properties of Weil functors. Let A = R � 1 � N be aWeil algebra, where N is the maximal ideal of nilpotents. Then we have:1. The construction of 3.3 de�nes a covariant functor TA :Mf ! Mf suchthat (TAM;�A;M ;M ) is a smooth �ber bundle with standard �ber N 
 E if Mis modelled on the convenient space E. For any f 2 C1(M;M 0) we have acommutative diagram TAM wTAfu�A;M TAM 0u �A;M 0M wf M 0.So (TA; �A) is a bundle functor onMf , which gives a vector bundle onMf if andonly if N is nilpotent of order 2.2. The functor TA : Mf ! Mf is multiplicative: it respects products. Itmaps the following classes of mappings into itself: immersions, splitting immer-sions, embeddings, splitting embeddings, closed embeddings, submersions, split-ting submersions, surjective submersions, �ber bundle projections. It also re-spects transversal pullbacks. For �xed manifolds M and M 0 the mapping TA :C1(M;M 0) ! C1(TAM;TAM 0) is smooth, so it maps smoothly parametrizedfamilies into smoothly parametrized families.3. If (U�) is an open cover of M then TA(U�) is also an open cover of TAM .4. Any algebra homomorphism ' : A ! B between Weil algebras induces anatural transformation T ('; ) = T' : TA ! TB . If ' is injective, then T (';M ) :TAM ! TBM is a closed embedding for each manifold M . If ' is surjective,



PRODUCT PRESERVING FUNCTORS 295then T (';M ) is a �ber bundle projection for each M . So we may view T as aco-covariant bifunctor from the category of Weil algebras timesMf toMf .Proof. 1. The main assertion is clear from 3.3. The �ber bundle �A;M : TAM !M is a vector bundle if and only if the transition functions TA(u��) are �ber linearN 
 E� ! N 
 E�. So only the �rst derivatives of u�� should act on N , so anyproduct of two elements in N must be 0, thus N has to be nilpotent of order 2.2. The functor TA respects �nite products in the category of c1-open subsetsof convenient vector spaces by 3.3, step 3 and 5. All the other assertions follow bylooking again at the chart structure of TAM and by taking into account that f ispart of TAf (as the base mapping).3. This is obvious from the chart structure.4. We de�ne T (';E) := '
E : A
E ! B
E. By 3.3, step 3, this restricts to anatural transformation TA ! TB on the category of c1-open subsets of convenientvector spaces and by gluing also on the categoryMf . Obviously T is a co-covariantbifunctor on the indicated categories. Since �B �' = �A (' respects the identity),we have T (�B;M ) � T (';M ) = T (�A;M ), so T (';M ) : TAM ! TBM is �berrespecting for each manifoldM . In each �ber chart it is a linear mapping on thetypical �ber NA 
E ! NB 
E.So if ' is injective, T (';M ) is �berwise injective and linear in each canonical�ber chart, so it is a closed embedding.If ' is surjective, let N1 := ker' � NA, and let V � NA be a linear complementto N1. Then ifM is modeled on convenient vector spaces E� and for the canonicalcharts we have the commutative diagram:TAM wT (';M ) TBMTA(U�) wT (';U�)u uTA(u�) TB(U�)uuTB(u�)u�(U�)� (NA 
E�) wId�('jNA 
E�) u�(U�)� (NB 
E�)u�(U�)� (N1 
E�)� (V 
 E�) wId�0 � Iso u�(U�)� 0� (NB 
 E�)So T (';M ) is a �ber bundle projection with standard �ber E� 
 ker'. �3.6. Theorem. Let A and B be Weil algebras. Then we have:(1) We get the algebra A back from the Weil functor TA by TA(R) = Awith addition +A = TA(+R), multiplication mA = TA(mR) and scalarmultiplication mt = TA(mt) : A! A.(2) The natural transformations TA ! TB correspond exactly to the algebrahomomorphisms A! B.



296 ANDREAS KRIEGL, PETER W. MICHORProof. (1) is obvious. (2) For a natural transformation ' : TA ! TB its value'R: TA(R) = A! TB(R) = B is an algebra homomorphisms. The inverse of thismapping is already described in theorem 3.5.4. �3.7. Proposition. For two manifolds M1 and M2, with M2 smoothly real com-pact and smoothly regular, the mappingC1(M1;M2)! Hom(C1(M2;R);C1(M1;R))f 7! (f� : g 7! g � f)is bijective.Proof. Let x1 2M1 and ' 2 Hom(C1(M2;R); C1(M1;R)). Then evx1 � ' is inHom(C1(M2;R);R), so by 2.4 there is a x2 2M2 such that evx1 �' = evx2 sinceM2 is smoothly real compact, and x2 is unique since M2 is smoothly Hausdor�. Ifwe write x2 = f(x1), then f :M1 ! M2 and '(g) = g � f for all g 2 C1(M2;R).This implies that f is smooth, since M2 is smoothly regular. �3.8. Remark. IfM is a smoothly real compact and smoothly regular manifoldweconsider the set DA(M ) := Hom(C1(M;R); A) of all bounded homomorphismsfrom the convenient algebra of smooth functions on M into a Weil algebra A.Obviously we have a natural mapping TAM ! DAM which is given by X 7!(f 7! TA(f):X), using 3.5 and 3.6.Let D be the algebra of Study numbers R:1� R:� with �2 = 0. Then TDM =TM , the tangent bundle, and DD(M ) is the smooth bundle of all operationaltangent vectors, i.e. bounded derivations at a point x of the algebra of germsC1x (M;R) see [10]. We want to point out that even on Hilbert spaces there existderivations which are di�erential operators of order 2 and 3, respectively, see [10].It would be nice if DA(M ) were a smooth manifold, not only for A = D . We donot know whether this is true. The obvious method of proof hits severe obstacles,which we now explain.Let A = R:1� N for a nilpotent �nite dimensional ideal N , let � : A ! R bethe corresponding projection. Then for ' 2 DA(M ) = Hom(C1(M;R);A) thecharacter � � ' = evx for a unique x 2 M , since M is smoothly real compact.Moreover X := '� evx :1 : C1(M;R)! N satis�es the expansion property at x:(1) X(fg) = X(f):g(x) + f(x):X(g) +X(f):X(g):Conversely a bounded linear mapping X : C1(M;R) ! N with property (1)is called an expansion at x. Clearly each expansion at x de�nes a bounded ho-momorphism ' with � � ' = evx. So we view DA(M )x as the set of all ex-pansions at x. Note �rst that for an expansion X 2 DA(M )x the value X(f)depends only on the germ of f at x: If f jU = 0 for a neighborhood U of x,choose a smooth function h with h = 1 o� U and h(x) = 0. Then hkf = f andX(f) = X(hkf) = 0 + 0+X(hk)X(f) = � � � = X(h)kX(f) which is 0 for k largerthan the nilpotence index of N .



PRODUCT PRESERVING FUNCTORS 297Suppose now that M = U is a c1-open subset of a convenient vector space E.We can ask whether DA(U )x is a smooth manifold. We have no proof of this. Letus sketch the di�culty. A natural way to prove that would be by induction onthe nilpotence index of N . Let N0 := fn 2 N : n:N = 0g, which is an ideal in A.Consider the short exact sequence0! N0 ! N p�! N=N0 ! 0and a linear section s : N=N0 ! N . ForX : C1(U;R)! N we consider �X := p�Xand X0 := X � s � �X. Then X is an expansion at x 2 U if and only if�X is an expansion at x with values in N=N0 and X0 satis�es(2) X0(fg) = X0(f)g(x) + f(x)X0(g) + s( �X(f)):s( �X (g)) � s( �X(f): �X(g)):Note that (2) is an a�ne equation in X0 for �xed �X. By induction the �X 2DA=N0 (U )x form a smooth manifold, and the �ber over a �xed �X consists of allX = X0 + s � �X with X0 in the closed a�ne subspace described by (2), whosemodel vector space is the space of all derivations at x. If we were able to �nd a(local) section DA=N0 (U )! DA(U ) and if these sections would �t together nicelywe could then conclude that DA(U ) were the total space of a smooth a�ne bundleover DA=N0 (U ), so it would be smooth. But this translates to a lifting problem asfollows: A homomorphismC1(U;R)! A=N0 has to be lifted in a `natural way' toC1(U;R)! A. But we know that in general C1(U;R) is not a free C1-algebra,see 4.4 for comparison.3.9. The basic facts from the theory of Weil functors are completed by the fol-lowing assertion.Proposition. Given two Weil algebras A and B, the composed functor TA � TBis a Weil functor generated by the tensor product A 
B.Proof. For a convenient vector space E we have TA(TBE) = A
B 
E and thisis compatible with the action of smooth mappings, by 3.3. �Corollary. There is a canonical natural equivalence TA �TB �= TB �TA generatedby the exchange algebra isomorphism A
 B �= B 
 A.3.10. Weil functors and Lie groups. We shall use the notion of a regularin�nite dimensional Lie group, modelled on convenient vector spaces, as laid outin [9], following the lead of Omori et. al. [20] and Milnor [15]. We just remark thatthey have unique smooth exponential mappings, and that no smooth Lie group isknown which is not regular. We shall use the notation � : G � G ! G for themultiplication and � : G ! G for the inversion. The tangent bundle TG of aregular Lie group G is again a Lie group, the semidirect product gnG of G withits Lie algebra g.Now let A be a Weil algebra and let TA be its Weil functor. Then the spaceTA(G) is again a Lie group with multiplication TA(�) and inversion TA(�). By



298 ANDREAS KRIEGL, PETER W. MICHORthe properties 3.5 of the Weil functor TA we have a surjective homomorphism�A : TAG! G of Lie groups. Following the analogy with the tangent bundle, fora 2 G we will denote its �ber over a by (TA)aG � TAG, likewise for mappings.With this notation we have the following commutative diagram, where we assumethat G is a regular Lie group:g
N w g
A0 w (TA)0g wu(TA)0 expG TAg wuTA expG g wu expG0e w (TA)eG w TAG w�A G w eThe structural mappings (Lie bracket, exponential mapping, evolution operator,adjoint action) are determined by multiplication and inversion. Thus their imagesunder the Weil functor TA are again the same structural mappings. But note thatthe canonical 
ip mappings have to be inserted like follows. So for exampleg
A �= TAg = TA(TeG) ��! Te(TAG)is the Lie algebra of TAG and the Lie bracket is just TA([ ; ]). Since the bracketis bilinear, the description of 3.3 implies that [X 
 a; Y 
 b]TAg = [X;Y ]g 
 ab.Also TA expG = expTAG. If expG is a di�eomorphism near 0, (TA)0(expG) :(TA)0g ! (TA)eG is also a di�eomorphism near 0, since TA is local. The naturaltransformation 0G : G ! TAG is a homomorphism which splits the bottom rowof the diagram, so TAG is the semidirect product (TA)0g n G via the mappingTA� : (u; g) 7! TA(�g)(u). So from [9], theorem 5.5, we may conclude that TAG isagain a regular Lie group, if G is regular. If !G : TG! TeG is the Maurer Cartanform of G (i.e. the left logarithmic derivative of IdG) then�0 � TA!G � � : TTAG �= TATG! TATeG �= TeTAGis the Maurer Cartan form of TAG.4. Product preserving functors from finitedimensional manifolds to infinite dimensional ones4.1. Product preserving functors. Let Mf�n denote the category of all �-nite dimensional separable Hausdor� smooth manifolds, with smooth mappings asmorphisms. Let F :Mf�n ! Mf be a functor which preserves products in thefollowing sense: The diagramF (M1) F (pr1) ���� F (M1 �M2) F (pr2)����! F (M2)is always a product diagram.



PRODUCT PRESERVING FUNCTORS 299Then F (point) = point, by the following argument:F (point) F (point� point)u F (pr1)�= wF (pr2)�= F (point)point�������� f1 uf 44444446f2Each of f1, f , and f2 determines each other uniquely, thus there is only onemapping f1 : point! F (point), so the space F (point) is single pointed.We also require that F has the following two properties:(1) The map on morphisms F : C1(Rn;R)! C1(F (Rn); F (R)) is smooth,where we regard C1(F (Rn); F (R)) as smooth space, see [2] or [10]. Equiv-alently the associated mapping C1(Rn;R)� F (Rn)! F (R) is smooth.(2) There is a natural transformation � : F ! Id such that for each M themapping �M : F (M )!M is a �ber bundle, and for an open submanifoldU � M the mapping F (incl) : F (U )! F (M ) is a pullback.4.2. C1-algebras. An R-algebra is a commutative ring A with unit togetherwith a ring homomorphismR! A. Then every map p : Rn! Rm which is givenby an m-tuple of real polynomials (p1; : : : ; pm) can be interpreted as a mappingA(p) : An ! Am in such a way that projections, composition, and identity arepreserved, by just evaluating each polynomial pi on an n-tuple (a1; : : : ; an) 2 An.A C1-algebra A is a real algebra in which we can moreover interpret all smoothmappings f : Rn ! Rm. There is a corresponding map A(f) : An ! Am, andagain projections, composition, and the identity mapping are preserved.More precisely, a C1-algebra A is a product preserving functor from the cate-gory C1 to the category of sets, where C1 has as objects all spaces Rn, n � 0, andall smooth mappings between them as arrows. Morphisms between C1-algebrasare then natural transformations: they correspond to those algebra homomor-phisms which preserve the interpretation of smooth mappings.Let us explain how one gets the algebra structure from this interpretation. SinceA is product preserving, we have A(point) = point. All the laws for a commutativering with unit can be formulated by commutative diagrams of mappings betweenproducts of the ring and the point. We do this for the ringRand apply the productpreserving functor A to all these diagrams, so we get the laws for the commutativering A(R) with unit A(1) with the exception of A(0) 6= A(1) which we will checklater for the case A(R) 6= point. Addition is given by A(+) and multiplication byA(m). For � 2 R the mapping A(m�) : A(R)! A(R) equals multiplication withthe element A(�) 2 A(R), since the following diagram commutes:A(R)u�= AAAAAAAAAAACA(m�)A(R)� point wId�A(�)u�= A(R)�A(R) w A(R)A(R� point) wA(Id��) A(R�R)''''')A(m)



300 ANDREAS KRIEGL, PETER W. MICHORWe may investigate now the di�erence between A(R) = point and A(R) 6= point.In the latter case for � 6= 0 we have A(�) 6= A(0) since multiplication by A(�)equals A(m�) which is a di�eomorphism for � 6= 0 and factors over a one pointedspace for � = 0. So for A(R) 6= point which we assume from now on, the grouphomomorphism � 7! A(�) from R into A(R) is actually injective.This de�nition of C1-algebras is due to Lawvere [12], for a thorough account seeMoerdijk-Reyes [16], for a discussion from the point of view of functional analysissee [3]. In particular there on a C1-algebra A the natural topology is de�ned asthe �nest locally convex topology on A such that for all a = (a1; : : : ; an) 2 An theevaluation mappings "a : C1(Rn;R)! A are continuous. In [3], 6.6 one �nds amethod to recognize C1-algebras among locally-m-convex algebras. In [14] one�nds a characterization of the algebras of smooth functions on �nite dimensionalalgebras among all C1-algebras.4.3. Theorem. Let F : Mf�n ! Mf be a product preserving functor. Theneither F (R) is a point or F (R) is a C1-algebra. If ' : F1 ! F2 is a naturaltransformation between two such functors, then 'R: F1(R)! F2(R) is an algebrahomomorphism.If F has property (1) then the natural topology on F (R) is �ner than the givenmanifold topology and thus is Hausdor� if the latter is it.If F has property (2) then F (R) is a local algebra with an algebra homomor-phism � = �R: F (R)! Rwhose kernel is the maximal ideal.Proof. By de�nition F restricts to a product preserving functor from the categoryof all Rn's and smooth mappings between them, thus it is a C1-algebra.If F has property (1) then for all a = (a1; : : : ; an) 2 F (R)n the evaluationmappings are given by"a = eva �F : C1(Rn;R)! C1(F (R)n; F (R))! F (R)and thus are even smooth.If F has property (2) then obviously �R= � : F (R) ! R is an algebra ho-momorphism. It remains to show that the kernel of � is the largest ideal. So ifa 2 A has �(a) 6= 0 2 R then we have to show that a is invertible in A. Since thefollowing diagram is a pullback,F (Rn f0g) F (i)����! F (R)�??y �??yRn f0g i����! Rwe may assume that a = F (i)(b) for a unique b 2 F (Rn f0g). But then 1=i : Rnf0g ! R is smooth, and F (1=i)(b) = a�1, since F (1=i)(b):a = F (1=i)(b):F (i)(b) =F (m)F (1=i; i)(b) = F (1)(b) = 1, compare 4.2. �



PRODUCT PRESERVING FUNCTORS 3014.4. Examples. Let A be an augmented local C1-algebra with maximal idealN . Then A is quotient of a free C1-algebra C1�n(R�) of smooth functions on somelarge product R�, which depend globally only on �nitely many coordinates, see[16] or [3]. So we have a short exact sequence0! I ! C1�n(R�) '�! A! 0:Then I is contained in the codimension 1 maximal ideal '�1(N ), which is easilyseen to be ff 2 C1�n(R�) : f(x0) = 0g for some x0 2 R�. Then clearly ' factorsover the quotient of germs at x0. If A has Hausdor� natural topology, then ' evenfactors over the Taylor expansion mapping, by the argument in [3], 6.1, as follows.Namely, let f 2 C1�n(R�) be in�nitely 
at at x0. We shall show that f is in theclosure of the set of all functions with germ 0 at x0. Let x0 = 0 without loss. Note�rst that f factors over some quotient R�! RN, and we may replace R� by RNwithout loss. De�ne g : RN �RN ! RN,g(x; y) = � 0 if jxj � jyj;(1� jyj=jxj)x if jxj > jyj:Since f is 
at at 0, the mapping y 7! (x 7! fy(x) := f(g(x; y)) is a continuousmapping RN ! C1(RN;R) with the property that f0 = f and fy has germ 0 at0 for all y 6= 0.Thus the augmented local C1-algebras whose natural topology is Hausdor� areexactly the quotients of algebras of Taylor series at 0 of functions in C1�n(R�).It seems that local implies augmented: one has to show that a C1-algebrawhich is a �eld is 1-dimensional. Is this true?4.5. Chart description of functors induced by C1-algebras. Let A =R�1�N be an augmented local C1-algebra which carries a compatible convenientstructure, i.e.A is a convenient vector space and each mappingA : C1(Rn;Rm)!C1(An; Am) is a well de�ned smooth mapping. As in the proof of 4.3 one seesthat the natural topology on A is then �ner than the given convenient one, thusis Hausdor�. Let us call this an augmented local convenient C1-algebra.We want to associate to A a functor TA : Mf�n ! Mf from the categoryMf�n of all �nite dimensional separable smooth manifolds to the category ofsmooth manifolds modelled on convenient vector spaces.Step 1. Let � = �A : A ! A=N = R be the augmentation mapping. This is asurjective homomorphism of C1-algebras, so the following diagram commutes forf 2 C1(Rn;Rm): An wTAfu�n Amu �mRn wf RmIf U � Rn is an open subset we put TA(U ) := (�n)�1(U ) = U � Nn, which is anopen subset in TA(Rn) := An.



302 ANDREAS KRIEGL, PETER W. MICHORStep 2. Now suppose that f : Rn! Rm vanishes on some open set V � Rn. Weclaim that then TAf vanishes on the open set TA(V ) = (�n)�1(V ). To see this letx 2 V , and choose a smooth function g 2 C1(Rn;R) with g(x) = 1 and supportin V . Then g:f = 0 thus we have also 0 = A(g:f) = A(m) �A(g; f) = A(g):A(f),where the last multiplication is pointwise diagonal multiplication between A andAm. For a 2 An with (�n)(a) = x we get �(A(g)(a)) = g(�(a)) = g(x) = 1,thus A(g)(a) is invertible in the algebra A, and from A(g)(a):A(f)(a) = 0 we mayconclude that A(f)(a) = 0 2 Am.Step 3. Now let f : U ! W be a smooth mapping between open sets U � Rnand W � Rm . Then we can de�ne TA(f) : TA(U )! TA(W ) in the following way.For x 2 U let fx : Rn ! Rm be a smooth mapping which coincides with f in aneighborhood V of x in U . Then by step 2 the restriction of A(fx) to TA(V ) doesnot depend on the choice of the extension fx, and by a standard argument one cande�ne uniquely a smooth mapping TA(f) : TA(U )! TA(V ). Clearly this gives usan extension of the functor A from the category of all Rn's and smooth mappingsinto convenient vector spaces to a functor from open subsets of Rn's and smoothmappings into the category of c1-open (indeed open) subsets of convenient vectorspaces.Step 4. Let M be a smooth �nite dimensional manifold, let (U�; u� : U� !u�(U�) � Rm) be a smooth atlas of M with chart changings u�� := u� � u�1� :u�(U��) ! u�(U��). Then by step 3 we get smooth mappings between c1-opensubsets of convenient vector spacesTA(u�(U��)) wTA(u��)u� TA(u�(U��))u �u�(U��) wu�� u�(U��)form again a cocycle of chart changings and we may use them to glue the c1-opensets TA(u�(U�)) = ��1Rm(u�(U�)) � Am in order to obtain a smooth manifoldwhich we denote by TAM . By the diagram above we see that TAM will be thetotal space of a �ber bundle T (�A;M ) = �A;M : TAM ! M , since the atlas(TA(U�); TA(u�)) constructed just now is already a �ber bundle atlas. So if Mis Hausdor� then also TAM is Hausdor�, since two points xi can be separated inone chart if they are in the same �ber, or they can be separated by inverse imagesunder �A;M of open sets in M separating their projections.This construction does not depend on the choice of the atlas. For two atlaseshave a common re�nement and one may pass to this.If f 2 C1(M;M 0) for two manifolds M , M 0, we apply the functor TA tothe local representatives of f with respect to suitable atlases. This gives localrepresentatives which �t together to form a smooth mapping TAf : TAM ! TAM 0.Clearly we again have TA(f � g) = TAf � TAg and TA(IdM ) = IdTAM , so thatTA :Mf !Mf is a covariant functor.



PRODUCT PRESERVING FUNCTORS 3034.6. Theorem. Main properties. Let A = R � 1 � N be a local augmentedconvenient C1-algebra. Then we have:1. The construction of 4.5 de�nes a covariant functor TA : Mf�n ! Mfsuch that (TAM;�A;M ;M ) is a smooth �ber bundle with standard �ber Nm ifdimM = m. For any f 2 C1(M;M 0) we have a commutative diagramTAM wTAfu�A;M TAM 0u �A;M 0M wf M 0.2. The functor TA : Mf ! Mf is multiplicative: it respects products. Itrespects immersions, embeddings, etc, similarly as in 3.5. It also respects transver-sal pullbacks. For �xed manifolds M and M 0 the mapping TA : C1(M;M 0) !C1(TAM;TAM 0) is smooth.3. Any bounded algebra homomorphism ' : A ! B between augmented con-venient C1-algebras induces a natural transformation T ('; ) = T' : TA ! TB .If ' is split injective, then T (';M ) : TAM ! TBM is a split embedding for eachmanifold M . If ' is split surjective, then T (';M ) is a �ber bundle projectionfor each M . So we may view T as a co-covariant bifunctor from the category ofaugmented convenient C1-algebras algebras timesMf�n toMf .Proof. 1. The main assertion is clear from 4.5. The �ber bundle �A;M : TAM !M is a vector bundle if and only if the transition functions TA(u��) are �ber linearN 
 E� ! N 
 E�. So only the �rst derivatives of u�� should act on N , so anyproduct of two elements in N must be 0, thus N has to be nilpotent of order 2.2. The functor TA respects �nite products in the category of c1-open subsetsof convenient vector spaces by 3.3, step 3 and 5. All the other assertions follow bylooking again at the chart structure of TAM and by taking into account that f ispart of TAf (as the base mapping).3. We de�ne T (';Rn) := 'n : An ! Bn. By 4.5, step 3, this restricts toa natural transformation TA ! TB on the category of open subsets of Rn's bygluing also on the category Mf . Obviously T is a co-covariant bifunctor onthe indicated categories. Since �B � ' = �A (' respects the identity), we haveT (�B;M ) � T (';M ) = T (�A;M ), so T (';M ) : TAM ! TBM is �ber respectingfor each manifoldM . In each �ber chart it is a linear mapping on the typical �berNmA ! NmB .So if ' is split injective, T (';M ) is �berwise split injective and linear in eachcanonical �ber chart, so it is a split embedding.If ' is split surjective, let N1 := ker' � NA, and let V � NA be a topologicallinear complement to N1. Then for m = dimM and for the canonical charts we



304 ANDREAS KRIEGL, PETER W. MICHORhave the commutative diagram:TAM wT (';M ) TBMTA(U�) wT (';U�)u uTA(u�) TB(U�)uuTB(u�)u�(U�)� NmA wId�'jNmA u�(U�)� NmBu�(U�) �Nm1 � V m wId�0 � Iso u�(U�)� 0�NmBSo T (';M ) is a �ber bundle projection with standard �ber E� 
 ker'. �4.7. Theorem. Let A and B be augmented convenient C1-algebras. Then wehave:(1) We get the convenient C1-algebra A back from the functor TA by re-stricting to the subcategory of Rn's.(2) The natural transformations TA ! TB correspond exactly to the boundedC1-algebra homomorphisms A! B.Proof. (1) is obvious. (2) For a natural transformation ' : TA ! TB (whichis smooth) its value 'R: TA(R) = A ! TB(R) = B is a C1-algebra homomor-phism which is smooth and thus bounded. The inverse of this mapping is alreadydescribed in theorem 4.6.4. �4.8. Proposition. Let A = R�1�N be a local augmented convenient C1-algebraand let M be a smooth �nite dimensional manifold.Then there exists a bijection" : TA(M )! Hom(C1(M;R); A)onto the space of bounded algebra homomorphisms, which is natural in A and M .Via " the expression Hom(C1( ;R); A) describes the functor TA in a coordinatefree manner.Proof. Step 1. Let M = Rn, so TA(Rn) = An. Then for a = (a1; : : : ; an) 2An we have "(a)(f) = A(f)(a1; : : : ; an), which gives a bounded algebra homo-morphism C1(Rn;R) ! A. Conversely, for ' 2 Hom(C1(Rn;R); A) considera = ('(pr1); : : : ; '(prn)) 2 An. Since polynomials are dense in C1(Rn;R), ' isbounded, and A is Hausdor�, ' is uniquely determined by its values on the coor-dinate functions pri (compare [3], 2.4.(3)), thus '(f) = A(f)(a) and " is bijective.Obviously " is natural in A and Rn.Step 2. Now let i : U � Rn be an embedding of an open subset. Then the imageof the mappingHom(C1(U;R);A) (i�)����! Hom(C1(Rn;R);A) "�1Rn;A���! An
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