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AR CHIVUM MA THEMA TICUM (BRNO)

T om us 33 (1997), 147 { 155DISPERSIONS FOR LINEAR DIFFERENTIALEQUATIONS OF ARBITRARY ORDERFranti�sek NeumanDedicated to the memory of Professor Otakar Bor�uvkaAbstract. F or linear di�eren tial equations of the second order in the Jacobi formy00
+ p( x) y = 0

O. Borùvk a in tro duced a notion of disp ersion. Here w e generalize this notion to

certain classes of linear di�eren tial equations of arbitrary order. Connection with

Ab el's functional equation is deriv ed. Relations b et w een asymptotic b eha viour of

solutions of these equations and distribution of zeros of their solutions are also

in v estigated . I. MotivationFor a linear di�erential equation of the second order in the Jacobi form(p) y00 + p(x)y = 0; p 2 C0(I); I = (a; b);�1� a < b � 1O. Borùvka [2] introduced the notions of a phase and the dispersion as follows.Consider two linearly independent solutions y1 and y2 of (p). A phase of (p)corresponding to the pair y1; y2 is a continuous function � : I ! R satisfying therelation tan�(x) = y1(x)=y2(x)wherever y2(x) 6= 0. The continuity of � implies � 2 C3(I) with �0(x) 6= 0 on I,because �0(x) = cy21(x) + y22(x) ; c = const. 6= 0:
1991 Mathematics Subject Classi�cation : 34A30, 34C10, 34C11, 39B22.Key words and phrases : linear di�eren tial equations, distribution of zeros, asymptotic b e-

ha viour, Ab el's functional equation.
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SEK NEUMANMoreover, the general solution of (p) can be written in the formy(t; c1; c2) = c1pj�0(x)j sin(�(x) + c2):If the equation (p) is oscillatory for x! b�, then limx!b� j�(x)j =1.The dispersion ' of (p) is de�ned [2] as follows. For arbitrary x0 2 (a; b), lety be a nontrivial solution of (p) vanishing at x0, i.e. y(x0) = 0. If there exists azero of this solution y to the right of x0, then the �rst zero of them is denoted by'(x0). Evidently ' is de�ned on (a; b) if (p) is oscillatory for x! b�. Borùvka hasshown that ' 2 C3; '0(x) > 0 and '(x) > x and the following Abel's functionalequation holds: �('(x)) = �(x) + � � sign �0wherever ' is de�ned. This functional equation was intensively studied by B.Choczewski [3], see also M. Kuczma [4], and in connection with the second orderdi�erential equations by E. Barvínek [1]. Important connections between distri-bution of zeros of solutions of oscillatory second-order equations (p) and theirasymptotic properties were studied in [5], see also [6]. Here we generalize theseresults to linear di�erential equations of the n-th order.II. Preliminary resultsConsider a linear di�erential equation of the form(P ) y(n) + pn�1(x)y(n�1) + � � �+ p0(x)y = 0 on I;I being an open interval of the reals, pi are real-valued continuous functions de�nedon I for i = 0; 1; : : : ; n� 1, i.e. pi 2 C0(I); pi : I ! R.Take functions f : J ! R and h : J ! I such thatf 2 Cn(J); f(t) 6= 0 for each t 2 J; andh 2 Cn(J); h0(t) 6= 0 for each t 2 J; and h(J) = I:For each solution y of equation (P ) the function z de�ned as(f; h) z : J ! R; z(t) := f(t) � y(h(t)); t 2 J;satis�es again a di�erential equation of the same form(Q) z(n) + qn�1(t)z(n�1) + � � �+ q0(t)z = 0 on J:Since h is a Cn-di�eomorphism of J onto I, solutions y are transformed intosolutions z on their whole intervals of de�nition. This is why we also speak abouta global transformation of equation (P ) into equation (Q).



DISPERSIONS F OR LINEAR D.E. 149Let y(x) = (y1(x); : : : ; yn(x))T denote an n-tuple of linearly independent solu-tions of the equation (P ) considered as a column vector function or as a curve inn-dimensional Euclidean space En with the independent variable x as the param-eter and y1(x); :: ::; yn(x) as its coordinate functions; MT denotes the transposeof the matrix M .If z(t) = (z1(t); : : : ; zn(t)T denotes an n-tuple of linearly independent solutionsof the equation (Q), then the global transformation (f; h) can be equivalentlywritten as z(t) = f(t) � y(h(x))or, for an arbitrary regular constant n� n matrix A ,z(t) = Af(t) � y(h(x))expressing only the fact that another n-tuple of linearly independent solutions ofthe same equation (Q) is taken.To emphasize this situation, let us denote by (Py) and (Qz) the equations (P )and (Q), respectively. Capital P refers to the coe�cients pi of the equation (Py),subscript y expresses a particular choice of an n-tuple of linearly independentsolutions. Similarly for (Qz) and other equations considered here.Denote by W [y](x) the Wronski determinant of y, i.e.det(y(x);y0(x); : : : ;y(n�1)(x)).The coe�cient pn�1 in (Py) is given aspn�1(x) = �(ln jW [y](x)j)0:We have pn�1 � 0 exactly when W [y](x) = const. 6= 0. SinceW [f:y(h)](t) = (f(t))n:(h0(t))n(n�1)2 :W [y](h(t));for the coe�cient qn�1 in (Qz) we have(1) qn�1(t) = �nf 0(t)f(t) � n(n� 1)2 h00(t)h0(t) + pn�1(h(t)):h0(t):Namely, if pn�1 � 0 then qn�1 � 0 occurs exactly when(2) f(t) = c:jh0(t)j 1�n2 ; c = const. 6= 0:Since the factor f belongs to Cn(J), we have h 2 Cn+1(J).III. Notation and basic propertiesLet all solutions of an equation (Ru) be periodic or half-periodic with a periodd; d > 0: u(x+ d) = u(x); oru(x+ d) = �u(x) on R:Then all coe�cients ri of (Ru) are periodic, ri(x+ d) = ri(x) on R.
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SEK NEUMANLemma 1. There is no equation (Ru) of odd order n with all half-periodic solu-tions.Proof. Consider W [u](x) for an equation (Ru) and its n-tuple u of linearly inde-pendent solutions. For u(x+ d) = �u(x) we would haveW [u](x+ d) = W [�u](x) = �W [u](x);because n is odd. Since W [u] is nonvanishing and continuous, this is a contradic-tion. �Consider an equation (Sv) of the same order that can be transformed into theequation (Ru): u(x) = f(x):v(h(x));h being a Cn-di�eomorphism of R onto J , the interval of de�nition of (Sv).Take f(x) = jju(x)jj :=pu21(x) + � � �+ u2n(x), jj�jjdenoting the Euclidean normof an n-dimensional vector. Evidently f 2 Cn(R); f(x) > 0, and f(x + d) = f(x)on R and jjv(t)jj = jjv(h(x))jj = jju(x)jj=f(x) = 1 .Let h be chosen so that(3) rn�1(x) = �nf 0(x)f(x) � n(n � 1)2 :h00(x)h0(x) ;i.e. h(x) := c � R xx0 [(f(�)) 21�n � expf �2n(n�1) � R ��0 rn�1(� )d�g]d�+ k.For rn�1 2 Cn�2(R), we have h 2 Cn(R); h0(x) > 0; h(x+d) = h(x)+p becauseof d-periodicity of f and rn�1, h(R) = R. Select c so that p = d. Due to relation(1) with respect to (3) where rn�1 stands for qn�1 and sn�1 � 0 for pn�1, we seethat(i) the coe�cient sn�1 in equation (Sv) is identically zero;(ii) all solutions of (Sv) are periodic or half-periodic with the period d, and(iii) jjv(t)jj= 1 .Choose t0 2 R arbitrarily. Let v be a nontrivial solution of (Sv) with the zeroof multiplicity (n� 1) at t0, i.e. satisfyingv(t0) = v0(t0) = � � � = v(n�2)(t0) = 0; v(n�1)(t0) 6= 0:Up to a constant multiplier, v is determined uniquely.Lemma 2. For the above solution v, the points t0 + kd; k 2 Z, are zeros ofmultiplicity n� 1.Proof follows from the periodicity or half-periodicity of all solutions of (Sv). �Now suppose that in addition to the above properties of equation (Sv), thefollowing one is also satis�ed:(iv) for each t0 2 R, any solution having a zero of multiplicity n � 1 at t0 hasthe point t0 + d as its �rst zero of the same multiplicity to the right of t0.



DISPERSIONS F OR LINEAR D.E. 151Remark 1. Property (iv) implies that d is the smallest positive period for whichv of (Sv) is periodic or half-periodic on the whole R.Notation 1. Let S denote the set of all linear di�erential equations satisfyingthe properties (i), (ii), (iii), and (iv). Furthermore, let P be the set of all lin-ear di�erential equations that can be obtained from equations in S by all globaltransformations (f; h). IV. DispersionsDe�nition. Let an equation (Py) of the order n belong to P. Take an arbitraryx0 from its interval of de�nition I and consider a nontrivial solution y having a zeroof multiplicity n� 1 at x0. Denote by '(x0) the �rst zero of the same multiplicityof this solution y to the right of x0. Call this function ' the dispersion of theequation (Py).Theorem 1. Let (f; h) be the transformation that transforms an equation (Py)of the n-th order from P into an equation from S. The dispersion ' of (Py) is well-de�ned on the whole interval of de�nition I of this equation and satis�es Abel'sfunctional equation(4) h('(x)) = h(x) + d � sign h0 ; x 2 I:Futhermore, ' 2 Cn(I); '(x) > x; '0(x) > 0; '(I) = I; andlimi!�1'[i](x0) = a; limi!1'[i](x0) = b; for each x0 2 I = (a; b);where '[i] denotes the i-th iterate of ', i.e. '[1] = '; '[i+1] = ' � '[i].Proof. Take x0 2 I arbitrarily, and denote by y a nontrivial solution of (Py)having x0 as its zero of multiplicity n � 1. Writing y(x) = cT � y(x), where c is asuitable constant vector and '�' denotes the dot product, we havecT � y(x0) = cT � y0(x0) = ::: = cT � y(n�2)(x0) = 0; cT � y(n�1)(x0) 6= 0:Hence(5) 0 = cT � f(x0) � v(h(x0));0 = cT � [f(x0) � v0(h(x0)) � h0(x0) + f 0(x0) � v(h(x0))]; ::: ;0 = cT � [f(x0) � v(n�2)(h(x0)) � (h0(x0))n�2 + L(n � 3)];0 6= cT � [f(x0) � v(n�1)(h(x0)) � (h0(x0))n�1 + L(n � 2)];where L(i) is a linear combination of the vectors v(h(x0));v0(h(x0)); :::;v(i)(h(x0))with some scalar functions as coe�cients.
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SEK NEUMANSince f(x0) and h0(x0) 6= 0, the solution v(t) = cT �v(t) of equation (Sv) has azero of multiplicity n� 1 at t0 = h(x0). Due to the property (iv), the �rst zero ofthis solution of the same multiplicity to the right of t0 is t0 + d, to the left of t0 ist0 � d. Hence h('(x0)) = t0 + d = h(x0) + d for increasing h, andh('(x0)) = t0 � d = h(x0) � d for decreasing h:Since x0 2 I was arbitrary, Abel's equation (4) holds.Now, h is a Cn-di�eomorphism of I onto R, thus(6) '(x) = h�1(h(x) + d:signh0)is de�ned for all x 2 I; '(x) > x; and '0(x) > 0 on I because h0('(x)):'0(x) =h0(x). Moreover '[i](x) = h�1(h(x) + i:d:signh0);hence limi!�1'[i](x0) = a and limi!1'[i](x0) = b: �Lemma 3. For each equation (Py) 2 P and its dispersion ' the following is true:y(x0) is parallel to y('(x0)), and '(x0) is the �rst parameter to the right of x0when it happens, i.e.'(x0) = minx>x0f rank (y(x0);y(x)) = 1g:Proof follows from the de�nition of the dispersion, the system (5) and the prop-erty (iv). �V. Asymptotic behaviourSince the factor f in the global transformation (f; h) is in general independenton the function h, we cannot expect a relation between asymptotic behaviour ofsolutions (depending on f) and the distribution of their zeros (depending on ' andhence on h). However, for linear di�erential equations of the n-th order with thevanishing coe�cients by the (n � 1)-st derivative we have the relation (2). Thuslet us consider the following class of equations.Notation 2. A linear di�erential equation of an order n belongs to the subset P0of P if its coe�cient by the (n� 1)-st derivative is identically zero.Remark 2. Evidently S � P0 and h 2 Cn+1(I). Then, due to (6), the dispersion' of each equation from P0 is also in Cn+1(I).



DISPERSIONS F OR LINEAR D.E. 153Theorem 2. Let an equation (Py) of the n-th order belong to P0 and let ' : I ! Idenote its dispersion. Ifa) '(x)� x is a nondecreasing function, orb) '(x)� x is a nonincreasing function, orc) '(x) � x = � = const. > 0,thena') maxima of absolute values of each solution of (Py) on consecutive intervals['[i](x0); '[i+1](x0)]; i = 0; 1; 2; ::: , form a nondecreasing sequence, orb') those maxima form a nonincreasing sequence, orc') each solution of (Py) is periodic or half-periodic with the period �, respec-tively.Remark 3. Conditions a) - c) mean that the distances between consecutive zerosof multiplicityn�1 of each solution of (Py) are a) nondecreasing, b) nonincreasing,c) the same.Proof of Theorem 2. Since (Py) 2 P0;(7) y(x) = jh0(x)j 1�n2 v(h(x)); x 2 I; h(I) = Rfor some (Sv) 2 S. For the dispersion ' of (Py) we haveh('(x)) = h(x) + d � sign h0and(8) h0('(x)) � '0(x) = h0(x); x 2 I:Each solution y of (Py) can be written as cT � y(x) for a suitable constantvector c. Choose x0 2 I. Let Mi be the maximum of jyj on the interval['[i](x0); '[i+1](x0)], i.e.Mi := max['[i] (x0);'[i+1](x0)] jcT � y(x)j =max['[i](x0);'[i+1](x0)] jjh0(x)j 1�n2 � cT � v(h(x))j:Now, due to (8), we haveMi+1 = max['[i+1] (x0);'[i+2](x0)] jjh0(x)j 1�n2 � cT � v(h(x))j =max['[i](x0);'[i+1](x0)] jjh0('(x))j 1�n2 � cT � v(h('(x)))j =max['[i](x0);'[i+1](x0)] ���j(h0(x)j 1�n2 � ('0(x))n�12 � cT � v(h(x)� d)��� =
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SEK NEUMANmax['[i](x0);'[i+1](x0)]f('0(x))n�12 � jh0(x)j 1�n2 � cT � v(h(x) + d)g �min['[i](x0);'[i+1](x0)]('0(x))n�12 � max['[i](x0);'[i+1](x0)] j � jh0(x)j 1�n2 � cT � v(h(x))jg =min['[i](x0);'[i+1](x0)]('0(x))n�12 �Mi:For the case a), when '(x) � x is increasing, i.e. '0(x) � 1 everywhere, we getMi+1 � Mi; hence the consecutive maxima cannot decrease. Analogously in thecase when b) '0(x) � 1, we haveMi+1 = max['[i](x0);'[i+1](x0)]f('0(x))n�12 j � jh0(x)j 1�n2 � cT � v(h(x))jg �max['[i](x0);'[i+1](x0)]('0(x))n�12 �Mi � Mi;and the consecutive maxima cannot increase.For '(x) � x = � > 0 we have '(x) = x + �; '0(x) = 1, h('(x)) = h(x) � d,and also h0('(x)) = h0(x). Hencey('(x)) = y(x+ �) and also= jh0('(x))j 1�n2 :v(h('(x))) = jh0(x)j 1�n2 :v(h(x)� d)= �jh0(x)j 1�n2 :v(h(x)) = �y(x):�VI. Final remarksThe dispersion just introduced for the n-th order linear di�erential equationsis a proper generalization of this notion introduced by O. Borùvka for the secondorder equations of the Jacobi form. The role of the set of equations S in his caseis played by a single equation v00 + v = 0 on Rthat admits half-periodic solutions with the period �:v(t) = � sin tcos t� ; v(t+ �) = �v(t):The subset of the second order equations from P is formed by all both side oscilla-tory equations in the general form, the set P0 consists from all both-side oscillatoryequations in the Jacobi form, (p). The function h here is the (�rst) phase and 'coincides with the dispersion introduced by O. Borùvka for equation (p). This 'in fact generalizes the dispersion even for the second order equations because it isde�ned for equations in the general form: y00 + p1(x)y0 + p0(x)y = 0.
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