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DISPERSIONS FOR LINEAR DIFFERENTIAL
EQUATIONS OF ARBITRARY ORDER

FRANTISEK NEUMAN

Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT.

I. MOTIVATION

For a linear differential equation of the second order in the Jacobi form
(p) Y +p(x)y=0, peC’(I),I =(a,b),—0c<a<b< oo

O. Boriivka [2] introduced the notions of a phase and the dispersion as follows.
Consider two linearly independent solutions y; and y2 of (p). A phase of (p)
corresponding to the pair y1,y2 is a continuous function « : I — IR satisfying the
relation

tan a(z) = y1(x)/ya(z)

wherever ys(x) # 0. The continuity of o implies o € C3(I) with a/(z) # 0 on I,

because
¢
o (z) = ————, c=const. #0.

vi(e) + v3(x)’
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Moreover, the general solution of (p) can be written in the form

(o)

If the equation (p) is oscillatory for # — b_, then limy_;_ |a(2)] = oc.

The dispersion ¢ of (p) is defined [2] as follows. For arbitrary zg € (a,b), let
y be a nontrivial solution of (p) vanishing at zg, i.e. y(xg) = 0. If there exists a
zero of this solution y to the right of 2y, then the first zero of them is denoted by
¢(zg). Evidently ¢ is defined on (a, b) if (p) is oscillatory for # — b_. Boriivka has
shown that p € C®, ¢/(z) > 0 and ¢(x) > z and the following Abel’s functional
equation holds:

y(t;e1,c2) = sin(a(z) + ¢a).

a(p(z)) = a(z) + 7 - sign o

wherever ¢ is defined. This functional equation was intensively studied by B.
Choczewski [3], see also M. Kuczma [4], and in connection with the second order
differential equations by E. Barvinek [1]. Tmportant connections between distri-
bution of zeros of solutions of oscillatory second-order equations (p) and their
asymptotic properties were studied in [5], see also [6]. Here we generalize these
results to linear differential equations of the n-th order.

II. PRELIMINARY RESULTS

Consider a linear differential equation of the form

(P) y(m) +Pn—1(l‘)y(”_1) + -+ po(x)y=0 on I,
I being an open interval of the reals, p; are real-valued continuous functions defined

onfori=0,1,....,n—1,ie p; € C°I),p; : [ — R.
Take functions f:J — R and h: J — I such that

fec™(J), f(t)#0 foreach teJ, and
heC™"(J),h'(t) #0 foreach te€J, and h(J)=1.
For each solution y of equation (P) the function z defined as
(f,h) ST =R, () = () (A1), te.
satisfies again a differential equation of the same form
(Q) A p g ) 4 ge(t)2 =0 on .

Since h is a ("-diffeomorphism of J onto I, solutions y are transformed into
solutions z on their whole intervals of definition. This is why we also speak about
a global transformation of equation (P) into equation (@).



Let y(x) = (y1(x), ..., ya(x))? denote an n-tuple of linearly independent solu-
tions of the equation (P) considered as a column vector function or as a curve in
n-dimensional Euclidean space F,, with the independent variable x as the param-

eter and yi(z), .. .., yn(x) as its coordinate functions; M7 denotes the transpose
of the matrix M.
If z(t) = (21(t), ..., 22(t)T denotes an n-tuple of linearly independent solutions

of the equation (@), then the global transformation (f,h) can be equivalently

written as
z(t) = f(t) - y(h(z))

or, for an arbitrary regular constant n x n matrix A |

z(t) = Af(t) -y (h(z))

expressing only the fact that another n-tuple of linearly independent solutions of
the same equation (@) is taken.

To emphasize this situation, let us denote by (Py) and (@),) the equations (P)
and (@), respectively. Capital P refers to the coefficients p; of the equation (Py),
subscript y expresses a particular choice of an n-tuple of linearly independent
solutions. Similarly for (@) and other equations considered here.

Denote by Wly](z) the Wronski determinant of y, i.e.

det(y(z),y'(z), ..., y""H(x)).
The coefficient p,_1 in (Py) is given as

Pa—1(x) = —(In [W[y](z)])"
We have p,_1 = 0 exactly when W[y](z) = const. # 0. Since

n(n—1

Wfy(W]) = (f&)".(K'@) "= WIyl(h(t)),
for the coefficient ¢,_1 in (Qz) we have

W = DR
T 2w

Namely, if p,—1 = 0 then ¢,_1 = 0 occurs exactly when

(1) In-1(t) = + pa—1(R(1)).1'(1).

1—n

(2) ft)=c|h'(t)]" =, c¢=const.#£0.
Since the factor f belongs to C™(J), we have h € C"+1(J).

I1I. NOTATION AND BASIC PROPERTIES

Let all solutions of an equation (Ry) be periodic or half-periodic with a period
d,d>0:
u(z+d)= u(x), or

u(z +d) = —u(x) on R.
Then all coefficients r; of (Ry) are periodic, r;(z + d) = r;(2) on R.



Lemma 1. There is no equation (Ry) of odd order n with all half-periodic solu-
tions.

Proof. Consider Wu](x) for an equation (Ry) and its n-tuple u of linearly inde-
pendent solutions. For u(z + d) = —u(z) we would have

Wul(z + d) = W[—u(z) = —W[u](z),
because n is odd. Since W[u] is nonvanishing and continuous, this is a contradic-
tion. d

Consider an equation (Sy) of the same order that can be transformed into the

equation (Ry):
u(z) = f(z).v(h(x)),

h being a C"-diffeomorphism of R onto J, the interval of definition of (Sy).

Take f(z) = |Ju(z)|| := V/ui(x) + -+ uZ(z), ||-||denoting the Euclidean norm
of an n-dimensional vector. Evidently f € C"(R), f(#) > 0, and f(z 4+ d) = f(x)
on I and [[v(t)]l = |[v(A(z)I| = lfae)ll/F(x) = 1

Let A be chosen so that

_ @) n(n—1) K(z)
(3) r”—l(x) - f(l‘) 9 : h/(l‘) )

ie h(z):=c- ;D [(f(a))ﬁ ~exp{n(;—zl) : f;u rp—1(7)dr}]do + k.

For r,_1 € C"~2(R), we have h € C"(R), h'(z) > 0, h(x+d) = h(x)+p because
of d-periodicity of f and r,_1, h(R) = R. Select ¢ so that p = d. Due to relation
(1) with respect to (3) where r,_, stands for ¢,_1 and s,_1 = 0 for p,_1, we see
that

(i) the coefficient s,_1 in equation (Sy) is identically zero;

(ii) all solutions of (Sy) are periodic or half-periodic with the period d, and

(i) V()| = 1.

Choose ty € R arbitrarily. Let v be a nontrivial solution of (Sy) with the zero
of multiplicity (n — 1) at #g, i.e. satisfying

v(te) = v'(t) = - = v\""D(tg) = 0,v("V(tg) £ 0.

Up to a constant multiplier, v is determined uniquely.

Lemma 2. For the above solution v, the points ty + kd, k € Z, are zeros of
multiplicity n — 1.

Proof follows from the periodicity or half-periodicity of all solutions of (Sy). O
Now suppose that in addition to the above properties of equation (Sy), the
following one 1s also satisfied:
(iv) for each ty € R, any solution having a zero of multiplicity n — 1 at ¢y has
the point g + d as its first zero of the same multiplicity to the right of ¢,.



Remark 1. Property (iv) implies that d is the smallest positive period for which
v of (Sy) is periodic or half-periodic on the whole R.

Notation 1. Let § denote the set of all linear differential equations satisfying
the properties (i), (ii), (iii), and (iv). Furthermore, let P be the set of all lin-
ear differential equations that can be obtained from equations in & by all global
transformations (f, h).

IV. DISPERSIONS

Definition. Let an equation (Py) of the order n belong to P. Take an arbitrary
zp from its interval of definition I and consider a nontrivial solution y having a zero
of multiplicity n — 1 at 2. Denote by ¢(xp) the first zero of the same multiplicity
of this solution y to the right of zq. Call this function ¢ the dispersion of the
equation (Py).

Theorem 1. Let (f, h) be the transformation that transforms an equation (Py)
of the n-th order from P into an equation from §. The dispersion ¢ of (Py) is well-
defined on the whole interval of definition I of this equation and satisfies Abel’s
functional equation

(4) h(e(z)) = h(z) +d -sign ', zel
Futhermore,
peC™(I), p(r) >z, ¢'(x)>0, @(I)=1I, and

im @f(20) = @, lim ¢Fl(2¢) = b, for each z¢ € I = (a,b),

1—— 00

i+1] (1]

where ¢l denotes the i-th iterate of ¢, i.e. o1l = ¢ ¢l = po et

Proof. Take xy € I arbitrarily, and denote by y a nontrivial solution of (Py)

having zg as its zero of multiplicity n — 1. Writing y(z) = ¢’ - y(z), where ¢ is a

suitable constant vector and ’-” denotes the dot product, we have
cywo) =t y'(xo)=...=¢T ~y("_2)(x0) =0, cf ~y("_1)(x0) # 0.
Hence

0=-c” - f(zo) v(h(z0)),

5 0= U V) K + ) Vb))
0= [f(xo) -V (h(x0)) - (W (20))" " + Lin 3],
0# ¢ - [f(wo) V"D (h(xo)) - (W (20)) " + Lin - 2],

where L(i) is a linear combination of the vectors v(h(zo)), v/ (h(x0)), ..., vO(h(0))
with some scalar functions as coefficients.



Since f(xo) and h'(xo) # 0, the solution v(t) = ¢! - v(t) of equation (Sy) has a
zero of multiplicity n — 1 at g = h(xp). Due to the property (iv), the first zero of
this solution of the same multiplicity to the right of ¢y is tg + d, to the left of ¢y is
to — d. Hence

h(p(zg)) =to+d = h(xg)+d for increasing A, and

h(p(xg)) =tg—d = h(xg) —d for decreasing h.

Since xg € I was arbitrary, Abel’s equation (4) holds.
Now, h is a C"-diffeomorphism of I onto R, thus

(6) o(x) = h=(h(x) + d.signh’)

is defined for all # € I,¢(x) > #, and ¢'(x) > 0 on I because h'(p(2)).¢'(x) =
h'(x). Moreover

ol (z) = h= (h(z) + i.d.signh’),

hence
lim @l(zg) =a and  lim @l(z0) = b.

d

Lemma 3. For each equation (Py) € P and its dispersion ¢ the following is true:
v(z) is parallel to y(v(xo)), and ¢(xg) is the first parameter to the right of xg
when it happens, 1.e.

e(zg) = min{ rank (y(zo),y(z)) = 1}.

r>To

Proof follows from the definition of the dispersion, the system (5) and the prop-
erty (iv). d

V. ASYMPTOTIC BEHAVIOUR

Since the factor f in the global transformation (f, k) is in general independent
on the function h, we cannot expect a relation between asymptotic behaviour of
solutions (depending on f) and the distribution of their zeros (depending on ¢ and
hence on h). However, for linear differential equations of the n-th order with the
vanishing coefficients by the (n — 1)-st derivative we have the relation (2). Thus
let us consider the following class of equations.

Notation 2. A linear differential equation of an order n belongs to the subset Py
of P if its coefficient by the (n — 1)-st derivative is identically zero.

Remark 2. Evidently § C P and h € C"T1(I). Then, due to (6), the dispersion
¢ of each equation from Py is also in C" (7).



Theorem 2. Let an equation (Py) of the n-th order belong to Py and let ¢ : I — I
denote its dispersion. If

a) p(x) — x is a nondecreasing function, or

b) p(x) — x is a nonincreasing function, or

¢) p(x) —x = § = const. > 0,
then

a’) maxima of absolute values of each solution of (Py) on consecutive intervals
[l (o), Pt (20)],i =0,1,2, ..., form a nondecreasing sequence, or

b’) those maxima form a nonincreasing sequence, or

¢’) each solution of (Py) is periodic or half-periodic with the period é, respec-
tively.

Remark 3. Conditions a) - ¢) mean that the distances between consecutive zeros
of multiplicity n—1 of each solution of (Py) are a) nondecreasing, b) nonincreasing,
¢) the same.

Proof of Theorem 2. Since (Py) € Py,

1—n

(7) y(@) = ()77 v(h(x)), w€l, WI)=R

for some (Sy) € S. For the dispersion ¢ of (Py) we have
h(e(x)) = h(x) + d -sign &’

and

(8) W (e(x)) - ¢'(x) = h(z), wel
Each solution y of (Py) can be written as ¢! - y(z) for a suitable constant
vector ¢. Choose zqg € I. Let M; be the maximum of |y| on the interval

[ell(2q), P+ (2)], L.

T
i = max ¢ y(z) =
[w[’](fo)yw[“r”(xo)]| (@)l

1—n

18 ()] =" - " - v(h(x))].

max
[l (o), @l *1 (z0)]

Now, due to (8), we have

M1 = max W= T (b)) =
i [¢[l+11(x0),<p[z+2](x0)]|| ( )| ( ( ))|
max WMlolzN] =" - T - v(h(o(z)] =
T ATt Sl (h(¢(2)))]
max - ||(W@)] T (@) T v(h(x) 2 d)| =

[l (@o),pli+ (20)]



min (¢ . max
Ll (o), @l +11(z0)] Ll (o), @l +11(z0)]

. ’ n=1
min p(x)) = - M.
O e ST LA Z
For the case a), when ¢(#) — « is increasing, i.e. ¢'(x) > 1 everywhere, we get

M;41 > M;, hence the consecutive maxima cannot decrease. Analogously in the
case when b) ¢'(#) < 1, we have

Mgy = max (' (@) T £ W (@) T T v(h(2)]) <

[l (@o),pli+ (20)]

/ n=1
max o'(x)) = - M; < M,
[l (z0),pli+11(@0)] (=)
and the consecutive maxima cannot increase.
For p(x) — 2 = 6 > 0 we have p(z) =z + 46, ¢'(2) =1, h(p(x)) = h(z) £ d,
and also h'(¢(2)) = h'(x). Hence

y(p(z)) = y(x +¢é) and also
= W' (p(x ))| v(h(p(x)) = [ ()| 7 v(h(z) £ d)
= £|1 ()] =" v(h(x)) = +y(x).0

VI. FINAL REMARKS

The dispersion just introduced for the n-th order linear differential equations
is a proper generalization of this notion introduced by O. Bortvka for the second
order equations of the Jacobi form. The role of the set of equations & in his case
is played by a single equation

v 4+v=0 on R

that admits half-periodic solutions with the period :

v(t) = (Smt) R —)

cost

The subset of the second order equations from P is formed by all both side oscilla-
tory equations in the general form, the set Py consists from all both-side oscillatory
equations in the Jacobi form, (p). The function h here is the (first) phase and ¢
coincides with the dispersion introduced by O. Bortivka for equation (p). This ¢
in fact generalizes the dispersion even for the second order equations because it is
defined for equations in the general form: v + p1(2)y' + po(x)y = 0.
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