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ON THE DOMAIN OF INFLUENCE IN THERMOELASTICITY
OF BODIES WITH VOIDS

MARIN MARIN

ABSTRACT. The domain of influence, proposed by Cowin and Nunziato, is
extended to cover the thermoelasticity of bodies with voids. We prove that
for a finite time ¢t > 0 the displacement field w;, the temperature § and
the change in volume fraction o generate no disturbance outside a bounded
domain Bz.

1. INTRODUCTION

It is remarkable to note that the theory of materials with voids or vacuous pores
was first proposed by Nunziato and Cowin [8]. In this theory the authors introduce
an additional degree of freedom in order to develop the mechanical behavior of a
body in which the skeletal material is elastic and interstices are voids of material.
The intended applications of the theory are to geological materials like rocks and
soil and to manufactured porous materials. The linear theory of elastic materials
with voids was developed by Cowin and Nunziato in [3]. Here the uniqueness
and weak stability of solutions are also derived. Tesan in [4] has established the
equations of thermoelasticity of materials with voids. An extension of these results
to cover the theory of micropolar materials with voids was been made in our studies
[6], [7]. In the present paper we first consider the basic equations and conditions
of the mixed initial-boundary value problem in the context of thermoelasticity of
bodies with voids. Next we define the domain of influence B; of the data at
time ¢ associated with the problem. We adopt the method used in [1] and [5]
to establish a domain of influence theorem. The main results assert that in the
context of theory considered, the solutions of the mixed initial-boundary value
problem vanishes outside By, for a finite time ¢ > 0.
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2. BASIC EQUATIONS

An anisotropic elastic material is considered. Assume a such body that occupies
a properly regular region B of three-dimensional Euclidian space R3 bounded by
a piecewise smooth surface 9B and we denote the closure of B by B. We use a
fixed system of rectangular Cartesian axes Ow;, (1 = 1,2,3) and adopt Cartesian
tensor notation. A superposed dot stands for the material time derivate while
a comma followed by a subscript denotes partial derivatives with respect to the
spatial coordinates.
Einstein summation on repeated indices is also used. Also, the spatial argument
and the time argument of a function will be omitted when there is no likehood of
confusion. The basic equations from thermoelasticity of bodies with voids are, [4]

(1) lijj + ofi = oti,
(2) hii+g+ ol = gro,
(3) oTon = qii + o1

The equation (1) is the motion equation, (2) is the balance of the equilibrated
forces and (3) is the energy equations. We complete the above equations with
- the constitutive equations

hi = Aijo',j + Dmniemn + diU - aig’

(4) g = —Bijeij — €0' — diO'J' + mé,
n = Bijei; + mo +ajo; + ab,
9 = ki;0 5

- the kinetic relations
(5) 26ij:ui7j—|—u]’7i, HZT_TO, C=9—q.

In the above equations we have used the following notations: g-the constant
mass density, n-the specific entropy, Tp-the constant absolute temperature of the
body in its reference state, k -the equilibrated inertia, u;- the components of dis-
placement vector, p-the volume distribution function which in the reference state
18 ¢g, o-the change in volume fraction measured from the reference state, #-the
temperature variation measured from the reference temperature 7g, e;;-the com-
ponents of the Cauchy strain tensor, ¢;;-the components of the symmetric stress
tensor, h;-the components of the equlibrated stress vector, ¢;-the components of
the heat flux vector, f;-the components of the body forces, r-the heat supply
per unit time, g-the intrinsic equilibrated force, [-the extrinsic equilibrated body
force, Cijmn, Bij, Dijk, Bij, Aij, di, a;, €, m, a, k;;-the characteristic functions of the
material, and they obey the symmetry relations

(6) Cijmn = Cmnij = Cjimn, Bij = Bji, Ay = Ay,
Diji = Djirg,  Bij = Bjis kij = kj
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The entropy inequality implies
(7) ki;6:6 ; > 0.
To the system of field equations (1) - (5) we adjoin the following initial conditions
(8) wi(®,0) = uf(x), w(z,0)=ui(x), 60(zx,0)=00=),
o(x,0)=0%x), &(x,0)=0'(x), =€B,
and the following prescribed boundary conditions
u; = u; on 0B X [O,to) , ti =tn; = {z on 8Bf X [O,to) ,
(9) o =¢ on dBy x [0,1q), h = hin; =h on 0B x [0,%0),
0 =0 on dBs x [0,10), q=qin; = ¢ on IB5 x [0,ty),

where 0B1,0By and 0Bs with respective complements 0B, 0B5 and 0B§, are

subsets of B, n; are the components of the unit outward normal to 0B, t; is
1

, Ui, ti, &, 8, ¢ and h are
prescribed functions in their domains. Introducing (5) and (4) into equations (1),
(2) and (3), we obtain the following system of equations

some instant that may be infinite, u?, u}, 6°, ¢° o

(10) 0ti; = (Cjimntmn + Bijo + Dijuo i — 3i;0) 5 + ofi,
0kG = (Dmnitmn + dio + Ajjo j — a;0) ; + ol —
— Biju;j — o —dio i +mb
1

- 1
af = ——(ki;j0 )i + =

T—ﬁi'di '—mé'—aié'i.
QTO TO J g )

By a solution of the mixed initial boundary value problem of the theory of ther-
moelasticity of bodies with voids in the cylinder Qg = B x [0,%5) we mean an
ordered array (u;, 0, o) which satisfies the system (10) for all (z,t) € g, the
boundary conditions (9) and the intial conditions (8).

3. MAIN RESULT

We begin this section with the definition of the domain of influence. Next, we
establish a domain of influence inequality, which is a counterpart of the inequality
established in [5]. Finally, we shall prove a domain influence theorem in the context
of thermoelasticity of bodies with voids. In all what follows we shall use the
following assumptions on the material properties

i) >0, x>0, Ty>0, a>0;
1) Cijmn®ijTmn + 2Bijrijz + 2Dijraijyn + 2d;yiz + €22 + Aijyiyy >
> a(zijeij +yiyi +2°), forall xy =z, yi, z; 0> 0;
iii) kijnin; > ymini, forall n;, v >0.
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These assumptions are in agreement with the usual restrictions imposed in the
mechanics of continua. The assumption iii) represent a considerable strenghtening
of the consequence (7) of the entropy production inequality.

For a sufficiently small ¢ > 0, let W.(z) be a smooth nondecreasing function,
vanishing in (—o0,0] and equal to one in [£,00) and for 0 < s < ¢,

(11) G@J):W@(R_r+t—%

C

for some fixed positive R and ¢, where r = | — ag|, xg is an arbitrary fixed
point, ¢ 1is a positive constant to be determined later.
G(z,s) is a smooth function on B x [0,%], vanishing outside ¥ where

S= | Sko, R+e(t—>s).
s€[0,t]

The sphere S(zg,R) is defined as
(12) S(xo,R) ={x € R*: |x — xo| <R} .
Let U(x,s) be the function defined as

1. .. .
(13) U(x,s) = —[ot;u; + ok6? + ab? + Cijmn¥i jUm n + ot +

2
+ Aijo',io',j + QBZ']'O'UZ'J' + QDZ']';@O";CUZ'J’ + QdiO'O'VZ'](l‘, 8) .
We also define the function K(z,s)

1
(14)  K(z,s) = §[guzul + oko? + ab? + Ui U 5+ o? + 0,0 ](x,s).

Taking into account the assumptions i) and ii) from (13) and (14) we deduce
(15) K(z,s) <Ul(x,s).

The next theorem is a necessary step to prove the main result.

Theorem 1. Let (uw;,0,0) be a solution to the system of equations (10)

with the initial conditions (8) and the boundary conditions (9). Then for any
R>0,t>0 and zy € B, we have that

1 t
(16) / U(l‘,t)dv + — ds/ kijﬁyiﬁyjdv <
D[zo,R] 0Ty Dlro,Rtc(t—s)]

1
g/ U(deV—I—/ds/ o[fity + 1o + ——r0ldV +
D[zg,R+ct] D[zo,R+c(t—s)] TO

1
/ ds/ [t w; + ho + ——qb]dS
8D[zo,R+c(t—s) TO

where D(zg, R) ={x € B: |z —xo| <R}, 0D(xo,R)={2 €IB:|e—xo| <R}.
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Proof. Multiplying the equation (10); by G4, it results

1 _d
(17) §GE(QUZUZ) = oG fity + (Gtijug) ; — G it —
- G(Cljmnum,nuz,] + Bijo-ui,j + Dijka,kui,j — 6”91%7]) R

Multiplying the equation (10)2 by Go, we get

1 .d
(18) §Ga(gmi2) = 0Glo + (Gh;¢) i — G ihio —
—G(Aij0 ;6 ;i + Dmnittm n0; + dioco ; — a;06 ;) —
— G(Bijuiyjé' + oo + diO'J'é' — m@a) .

At last, multiplying the equation (10)3 by G, we are led to

1
19) = —Gro+ —[(G4:) i — G 0] —
(19) QGdt( e TOGr + o l(GOa) i = G g

1
— QTGkijg’ig’j — G(ﬁmﬁum + mbo + ClZHO'yZ) .
0

Additing equations (17), (18) and (19) together, it results

1
(20) G (guZuZ + ok6? + ab?) = oG fit; + 0Glo + —Gro +
2 dt T
+ G(tmuz + h 1 + HQJ) G[CZJmnum,nuz,] +€UO’ + Aija,ié’,j +
+ Bzy (uz,]U + Uj ;0 ) + Dzyk(uz,jé’,k + ui,jo-,k) + dz(o-o-,z + (5'0'72')] -

. ) 1 1
— Gt — G ihio — QTOG,Z'QZH - QTOGkijg,ig,j :

The relation (20) may be restated as follows

(21) §Gdt(guZuZ + Qlﬁ?é'z + ab? + C’Z’jmnumynuiyj + 50’2 + Aijo',io',j +

+ 2B;;u;, jO’ + 2Dj5u5 j0 ) + 2d;00 ) —

= oG fiu; + oGl + GrH—I—G(t”uZ—I—h 0'—1— Hq])

1
kijf:0 ;)

1
— G v, — Gihijo— G —0g;, — —
Jtig , , q o7y ,

0To
that 1s

(22) —GU —|— klﬂ 0 5 = oG fiu; + oGlo —|— Grb’ +

1
+ G(t”ul + h Yol —|— 9(]]) Gyjtijdi — G,zhzo' — G,iQTHQi .
0
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Integrating both sides of equations (22) over Bx[0,?] and by using the divergence
theorem and the boundary conditions (9), we deduce

(23) /GU z,1) dV—I——/ /Gk’zﬂ 0 ;dVds =
/GUJ:OdV—I—/ Gtul—i—ha—i——qﬁ)d‘/ds—l—
8B oTh
/ / oG(fity —1—10'—1— H)dVds—l— / / GU (z,8)dVds —
—/ / (Gyjtijui + G,zhzo' + —Gqulﬁ)dVds
0o /B oTo
Taking into account the definition (11) of the function G, we find that

1
(24) | - G,jtijui - G,z’hz’é' - —Gyiqi9| =

0Ty
1 1] : 1 1Ty . 1 1Ty
=|-W, x—]tijdi + -W. x—hZO'—I— —Wax—qzm =
¢ r ¢ r colh r
1.1 .
= |-W. ;[(Cz’jmnum,nl‘j + Bijox; + Dijro paj — Bij0r; )i +

1
+ (Aijo ;% + Dinitim n@i + dice; — a;0z;)6 + Tk’ij@,j@l‘iﬂ
Lo

where

/ dW,
W. = .
¢ dr

We now make use of arithmetic-geometric mean inequality

2

1
(25) ab< —(L +

2 (p2 o)

to the last terms of relation (24) and by choosing suitable parameters p we can
find ¢ such that

1
(26) | — G jtiju; — G hio — gT Giqif| < W K(z,s),
and that
t . t 1
/ / GU(l‘, S)dVdS — / / (Gyjtijui + G,zhzo' + —Gqulﬁ)dVds <
0o JB 0o JB o1

< /0 /BVVa(J:, $)[K(x,8) —Ulx,s)]dVds <0.
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By using the inequality (27) in equation (23), it results

(28) /GU (2,1 dv+—/ / Ghij0,:0 ;dVds <
0To
1
g/ GU(m,O)dV—I——I—/ / oG [ty +16 + ——r0)dV ds +
B 0o JB 0°To
t
+/ G(t;0; + ho + L(je)dvcls.
aB 0To

Letting € — 0 into relation (28), G tends boundedly to the characteristic function
of ¥ and we get the inequality (16).

Based on the above estimations, we can now prove the main result of our study :
the domain of influence theorem.

Let B(t) be the set of points @ € B such that:

(1) x€B = ul #0orul #0ord” £ 0o0r > #0or 6°# 0 or Ir € [0,1]
such that f;(x,7) # 0 or l(z,7) # 0 or r(x,7) #0;

(2) € 9By = 3Jre]0,?] such that w;(z,7)#0,
(3) ® € dBf = 3Ir€]0,t] such that t;(x,7) # 0,
(4) ® € 9B = 3Jr€]0,t] such that a(x,7) #0,
(5) * €8BS = 3r €[0,t] such that h(x,7)#0,
(6) * € dBs = 3t €[0,t] such that O(z,7)#0,
(7) © € 9B = Jr€]0,1] such that g(z,7) #0.

The domain of influence of the data at instant t 1s defined as
(29) By = {xo € B: B(t) N S(zo, ct) # @},
where & is the empty set.

Theorem 2. Let (w;,0,0) be a solution to the system of equations (10) with
the initial conditions (8) and the boundary conditions (9). Then we have

w;=0, 6=0, c=0, on {B\B}x[0,1].

Proof. For any zq € B\ B; and 7 € [0,1], by using the inequality (16) with
t=71 and R=c(t—7), we obtain

(30) / U, )V + —/ / b0 Vs <
D[zg,c(t—7) QTO Dlzg,c(t—s)

]
1
S/ Ulx, OdV—I—/ / o(fity + 1o+ 7 rf)dVds +
Dlzo,ct)] Dlzo,c(t—s)] To

// tuZ
8D[rg,c(t—s)

76)dSds .
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Since zo € B\ By, we have x € D(xg,ct) = = & B(t) and hence

(31) / U (2, 0)dV = 0.
Dl[zg,ct]
Moreover, since D[xzg,c(t — s)] C D(zg,et), we have
(32) / / o(fity —1—10'—1— H)dVd:;:O,
Dlzg,c(t—s)
T _ _ 1 B
(33) / / (tit; + ho + —qf)dSds = 0.
0 J8D[xg,c(t—s)] 0Ty
Taking into account the assumption iii) and the relations (31), (32) and (33) we
obtain
(34) / Uz, 7)dV <0,
D[zg,c(t—1)]

and with aid of inequality (15), we get

(35) / K(z,m)dV <0,
D[l‘u, (t T)]

From the definition of K, it results
wi(xo,7) =0, O(ze,7) =0, o(zo,7)=0,

for any (xo,7) € {B\ B:} x [0,1]. B
Finally, since w;(29,0) =0 for any z¢ € B\ B, we deduce

Ui($0,7):0a 9(1‘0’7'):0, O'(l‘o,T):O,
for any (xo,7) € {B\ B¢} x [0,] and the proof of Theorem 2 is complete.
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