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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 379 { 386FROM SASAKIAN 3-STRUCTURES TO QUATERNIONICGEOMETRYYoshiyuki Watanabe and Hiroshi MoriDedicated to the memory of Hitoshi TAKAGIAbstract. We construct a family of almost quaternionic Hermitian struc-tures from an almost contact metric 3-structure and also do three kinds ofquaternionic K�ahler structures from a Sasakian 3-structure. In particular wehave a generalization of the second main result of Boyer-Galicki-Mann [5].1. IntroductionBy means of warped product there is a one-to-one correspondence betweenSasakian 3-structures and hyperk�ahler structures (see B�ar [2]). The fundamentaltechnique used in this paper is simple, but a more natural one from view points ofa generalization of the standard examples in quaternionic geometry (see Remark2). In fact it enables us to construct many examples of almost quaternionic Hermi-tian and quaternionic K�ahler manifolds (see Ejiri [6], Nakashima-Watanabe [12],Watanabe-Mori [15] for the almost Hermitian, Hermitian and K�ahlerian cases).Recently almost quaternionic Hermitian, quaternionic K�ahler and hyperk�ahlermanifolds have received a great deal of attention, and explicit examples of quater-nionic K�ahler manifolds and hyperk�ahler manifolds are already given (see [1], [4],[5] and the references therein).In the �rst half of 1970's Sasakian 3-structures were studied by Kuo [11],Tachibana-Yu [13], Kashiwada [9], Konishi [10], Tanno [14] and so on. Unfor-tunately, in this early period examples of manifolds with a Sasakian 3-structurewere only manifolds of constant curvature. This was a weak point in studyingthem. Recently Boyer-Galicki-Mann [4], [5] have called a Riemannian manifoldadmitting a Sasakian 3-structure a 3-Sasakian manifold, and have pointed out itsimportance in contrast with quaternionic K�ahler manifolds. They completed theclassi�cation of homogeneous 3-Sasakian manifolds, and found countable families1991 Mathematics Subject Classi�cation: 53C25, 53C15.Key words and phrases: almost contact metric 3-structure, Sasakian 3-structure, almostquaternionic Hermitian manifold, quaternionic K�ahler manifold, hyperk�ahler manifold.Received May 27, 1997.



380 Y. WATANABE, H. MORIof strongly inhomogeneous 3-Sasakian manifolds in [5]. Thus, thanks to Boyer-Galicki-Mann's results and due to the technique, we can easily obtain many modelspaces in quaternionic geometry.2. Almost contact metric and Sasakian 3-structuresLet M be a (2m+1)-dimensional di�erentiable manifold. An almost contactmetric structure on M is by de�nition a pair of a Riemannian metric g and analmost contact structure (�; �; �), where � is a tensor �eld of type (1,1), � is avector �eld and � is a 1-form, satisfying the following conditions (cf. Blair [3]):(2:1) �� = 0; �(�X) = 0; �(�) = 1; �2X = �X + �(X)�(2:2) g(X; �) = �(X); g(X;Y ) = g(�X; �Y ) + �(X)�(Y )for any vector �elds X;Y on M . An almost contact metric structure (�; �; �; g) iscalled Sasakian if furthermore(2:3) (rX�)Y = �(Y )X � g(X;Y )�for any vector �elds X;Y on M .Suppose that a di�erentiable manifold admits three almost contact structures(�(�); �(�); �(�)); � = 1; 2; 3, satisfying(2:4) �(�)(�(�)) = ���;�(�)�(�) = ��(�)�(�) = �(
); �(�) � �(�) = ��(�) � �(�) = �(
);�(�)�(�) � �(�) 
 �(�) = ��(�)�(�) + �(�) 
 �(�) = �(
)for "(�; �; 
) = 1, where "(�; �; 
) = 1 means that (�; �; 
) is a cyclic permu-tation of (1; 2; 3). Then (�(�); �(�); �(�)); � = 1; 2; 3 is called an almost contact3-structure. It is well known (cf. Kuo [11]) that the dimension of a manifoldwith an almost contact 3-structure is 4m+ 3 for some non-negative integer m. ARiemannian metric g is said to be associated to the 3-structure if it satis�es(2:5) g(�(�)X;�(�)Y ) = g(X;Y ) � �(�)(X)��(Y ); � = 1; 2; 3for any vector �elds X;Y on M . In a manifold with an almost contact 3-structurethere always exists a Riemannian metric g satisfying (2.5), and (�(�); �(�); �(�); g),� = 1; 2; 3 is called an almost contact metric 3-structure.An almost contact metric 3-structure (�(�); �(�); �(�); g), � = 1; 2; 3 is calleda Sasakian 3-structure if each (�(�); �(�); �(�); g) is a Sasakian structure . Thenf�(1); �(2); �(3)g are orthonormal vector �elds, satisfying[�(�); �(�)] = 2�(
)for "(�; �; 
) = 1 (cf. Tachibana-Yu [13], Tanno [14]). A manifold with a Sasakian3-structure is called a 3-Sasakian manifold.Remark that a 3-Sasakian manifold is an Einstein manifold (see Kashiwada [9]).



FROM SASAKIAN 3-STRUCTURES TO QUATERNIONIC GEOMETRY 3813. Almost quaternionic Hermitian and quaternionic K�ahlerstrucuresFollowing Alekseevsky-Marchiafava [1] and Ishihara [8], we recall the de�nitionsof almost quaternionic Hermitian, quaternionic K�ahler and hyperk�ahler structures.An almost hypercomplex structure on a manifold M of dimension 4m is byde�nition a triple H = (J(�)); � = 1; 2; 3 of almost complex structures, satisfying(3:1) J(�)J(�) = J(
)for "(�; �; 
) = 1. By TM we denote the tangent bundle of M . It generates asubbundle Q =< H > of the bundle End(TM ) of endomorphisms whose �berQx = RJ(1)jx + RJ(2)jx + RJ(3)jx in a point x 2 M is isomorphic to the Liealgebra sp1 of the symplectic group Sp(1). Such a subbundle is called an almostquaternionic structure generated by H. More generally, an almost quaternionicstructure on a manifoldM is de�ned as a subbundle Q � End(TM ) of the bundleof endomorphisms which is locally generated by an almost hypercomplex structureH. We shall refer to such H as an almost hypercomplex structure compatible withQ. Let Q be an almost quaternionic structure on M with a Riemannian metric.Then M can be equipped with a Q-Hermitian metric g, that is, all endomorphismsfromQ are skew-symmetric with respect to g. An almost quaternionic structure Qtogether with a Q-Hermitian metric g is called an almost quaternionic Hermitianstructure and a manifold with such a structure is called an almost quaternionicHermitian manifold.An almost quaternionic Hermitianmanifold is called a quaternionic K�ahler man-ifold if an almost hypercomplex structure (J(�)); � = 1; 2; 3 in any local coordinateneighbourhood U satis�es(3:2) rXJ(1) = r(X)J(2) � q(X)J(3);rXJ(2) = �r(X)J(1) + p(X)J(3);rXJ(3) = q(X)J(1) � p(X)J(2)for any vector �eld X on U , where r is the Levi-Civita connection of the Rieman-nian metric, and p; q; r are certain local 1-forms de�ned in U . In particular, if allp; q; r for each U are vanishing, then the structure is called hyperk�ahler.Remark that if m > 1, a quaternionic K�ahler manifold is an Einstein manifold(cf. Alekseevsky-Marchiafava [2], Ishihara [8]).4. Examples of almost quaternionic Hermitian structuresLet (�(�); �(�); �(�); g), � = 1; 2; 3 be an almost contact metric 3-structure ona manifold M of dimension 4m+3. By Iwe denote R or some open interval inR. For a positive function � on I, we de�ne an almost hypercomplex structure



382 Y. WATANABE, H. MORI( ~J(�)); � = 1; 2; 3 on M � Iby(4:1) ~J(�) = 0@ �(�) �(�)����(�) 0 1A :Let a; b be real valued functions on I, satisfying(4:2) a(t) > 0; a(t) + b(t) > 0:Then, we de�ne a Riemannian metric on M � Iby(4:3) ~g = a(t)g + b(t) 3X�=1 �(�) 
 �(�) + dt2;where dt2 is the usual metric on I. Thus by (4.1) and (4.3) we have the following(see Nakashima-Watanabe [12]).Proposition 4.1. Let (�(�); �(�); �(�); g); � = 1; 2; 3 be an almost contact metric3-structure on a manifold M of dimension 4m+3 and � a positive function on I.Let a; b be real valued functions on I, satisfying (4.2). Then ( ~J(�); ~g); � = 1; 2; 3 isan almost quaternionic Hermitian structure on M � Iif and only if � = pa+ b.In this section, capital Latin indices run on the range 1; 2; :::; 4m+4;while smallones run on the range 1; :::; 4m+ 3 and � = 4m + 4. Then the components ~gBCof ~g in (4.3) with respect to a natural local coordinate of M � Iare given by(4:4) (~gBC ) = 0@ agij + bP�(�)i�(�)j 00 1 1A :The inverse matrix (~gAB) of (~gBC) is given by(4:5) (~gAB) = 0@ ghia � ba(a+b)P �h(�)�i(�) 00 1 1A :Let (�(�); �(�); �(�); g); � = 1; 2; 3 be an almost contact metric 3-structure. By�kij we denote the Christo�el symbols of g. Then, using (4.4) and (4.5), the



FROM SASAKIAN 3-STRUCTURES TO QUATERNIONIC GEOMETRY 383Christo�el symbols ~�ABC of ~g are computed as follows:(4:6) ~��ij = �12(a0gij + b0X �(�)i�(�)j);�ì� = 12a [a0�ì + ab0 � a0ba+ b X �(̀�)�(�)i];~�ìj = �ìj + b2a [g`k � ba+ bX �(̀�)�k�)]�[P�(�)k(ri�(�)j +rj�(�)i)+P �(�)i(rj�(�)k �rk�(�)j)+P �(�)j(ri�(�)k �rk�(�)i)];others = 0;where (0) denotes the di�erentiation with respect to t. In particular, if(�(�); �(�); �(�); g); � = 1; 2; 3 is a Sasakian 3-structure, then we have~�ìj = �ìj + baX(�(�)i�(�)j` + �(�)j�(�)i`):5. Examples of quaternionic K�ahler manifoldsLet (M;�(�); �(�); �(�); g); � = 1; 2; 3 be a 3-Sasakian manifold and a, b be realvalued functions on some open interval I, satisfying (4.2). Then, by Proposition4.1 we can construct almost quaternionic Hermitian structures ( ~J(�); ~g); � = 1; 2; 3onM�I. Then, by using (2.1), (2.2), (2.3), (2.4) and (4.6), we can compute ~r ~J(�)as follows:~ri ~J�(�)j = �a02 �pa+ b��(�)ij + b02 (�(�)i�(
)j � �(�)j�(
)i);~ri ~Jj(�)� = 2pa+ b� a02a �j(�)i��b(2pa+ b� a0)2a(a+ b) + b02(a+ b)� (�(�)i�(
)j � �(�)j�(
)i);



384 Y. WATANABE, H. MORI~ri ~J(�)jh = pa+ b(2pa+ b� a0)2a �(�)j�hi + �2pa+ b+ a02pa+ b �h(�)gij�2ba (�(�)i�(
)jh � �(
)i�(�)jh) + b(a0 � 2pa + b)2apa+ b �(�)i�(�)j�h(�)+2bpa + b� ab0 + a0b2apa+ b �(�)j(�(�)i�h(�) + �(
)i�h(
))+ab0 � 4bpa+ b2apa+ b (�(�)i�(�)j + �(
)i�(
)j)�h(�);others = 0:In this place, suppose that the following equations hold:(5:1) 2pa+ b = a0; ab0 = 4bpa+ b:Then we can easily see that ( ~J(�); ~g); � = 1; 2; 3 is a quaternionic K�ahler structure.Putting a = f2 and hence b = f2(f 02 � 1), we see that the metric (4.3) reduces to(5:1)0 ~g = dt2 + f2g + f2(f 02 � 1)X�(�) 
 �(�);and moreover that the equations (5.1) are equivalent to the following OED(5:2) ff 00 � f 02 + 1 = 0:Thus we have the following.Proposition 5.1. Let (M;�(�); �(�); �(�)); � = 1; 2; 3 be a 3-Sasakian manifold.An almost quaternionic Hermitian structure constructed on M �Isuch as Propo-sition 4.1 is quaternionic K�ahler if and only if the function f satis�es the ODEff 00 � f 02 + 1 = 0with the conditions f > 0 and f 0 > 0 on I.Remark 1. After long calculations, it is shown that if the almost quaternionicHermitian structure mentioned above satis�es the condition (IV) in Alekseevsky-Marchiafava [1, p.157], then the function f has to satisfy the ODE (5.2).We shall write down the solutions of ODE (5.2) for later use. Usually, puttingp = f 0, we have f 00 = pdpdf ;from which (5.2) reduces to(5:3) pp2 � 1dp = dff :



FROM SASAKIAN 3-STRUCTURES TO QUATERNIONIC GEOMETRY 385Integrating the both sides of (5.3), we have(5:4) p2 � 1 = kf2;where k is constant. Recall that p = f 0(t), and that f(t) > 0 and f 0(t) > 0. Wemay, up to a motion of parameter t, have that a solution f(t) of the ODE (5.4) isof the form:Case 1. k = 0. f(t) = t; 0 < t <1:Case 2. k < 0 . f(t) = 1p�k sinh(p�kt); 0 < t <1:Case 3. k > 0: f(t) = 1pk sin(pkt); 0 < t < �pk :Thus we now have a generalization of Theorem B in Boyer-Galicki-Mann [5], sincef 0 = 1 in the case k = 0.Theorem 5.2. Let (M;�(�); �(�); �(�); g); � = 1; 2; 3 be a 3-Sasakian manifold.Let f be a real valued function, satisfying the ODE (5.2).(1) (Boyer-Galicki-Mann) If f(r) = r, then the product manifold M � R+with the cone metric in (5.1)' is hyperk�ahler.(2) If f(r) = 1p�k sinh(p�kr), then the product manifoldM �R+ with themetric in (5.1)' is quaternionic K�ahler, where k is a negative constant.(3) If f(r) = 1pk sin(pkr), then the product manifold M � (0; �pk ) with themetric in (5.1)' is quaternionic K�ahler, where k is a positive constant.Remark 2. In the above theorem, if M = S4m+3 with the canonical metric, thenthe manifolds are abstract rotational manifolds in the sense of Hsiang [7], andthe one constructed in (1) (resp. (2), (3)) is a geodesic coordinate neighbourhoodof the quaternionic Euclidean n-space H n with the canonical metric (resp. thequaternionic hyperbolic n-space HHn with the canonical metric, the quaternionicprojective n-space HPn with the canonical metric), where n = 4(m + 1) (see [6]and [15] for the complex case).
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