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FROM SASAKIAN 3-STRUCTURES TO QUATERNIONIC
GEOMETRY

Y OSHIYUKI WATANABE AND HIROSHI MORI

Dedicated to the memory of Hitoshi TAKAGI

ABSTRACT. We construct a family of almost quaternionic Hermitian struc-
tures from an almost contact metric 3-structure and also do three kinds of
quaternionic Kahler structures from a Sasakian 3-structure. In particular we
have a generalization of the second main result of Boyer-Galicki-Mann [5].

1. INTRODUCTION

By means of warped product there is a one-to-one correspondence between
Sasakian 3-structures and hyperkahler structures (see Bar [2]). The fundamental
technique used in this paper is simple, but a more natural one from view points of
a generalization of the standard examples in quaternionic geometry (see Remark
2). In fact it enables us to construct many examples of almost quaternionic Hermi-
tian and quaternionic Kahler manifolds (see Ejiri [6], Nakashima-Watanabe [12],
Watanabe-Mori [15] for the almost Hermitian, Hermitian and K&hlerian cases).

Recently almost quaternionic Hermitian, quaternionic Kahler and hyperkahler
manifolds have received a great deal of attention, and explicit examples of quater-
nionic Kahler manifolds and hyperkahler manifolds are already given (see [1], [4],
[5] and the references therein).

In the first half of 1970’s Sasakian 3-structures were studied by Kuo [11],
Tachibana-Yu [13], Kashiwada [9], Konishi [10], Tanno [14] and so on. Unfor-
tunately, in this early period examples of manifolds with a Sasakian 3-structure
were only manifolds of constant curvature. This was a weak point in studying
them. Recently Boyer-Galicki-Mann [4], [5] have called a Riemannian manifold
admitting a Sasakian 3-structure a 3-Sasakian manifold, and have pointed out its
importance in contrast with quaternionic Kahler manifolds. They completed the
classification of homogeneous 3-Sasakian manifolds, and found countable families
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of strongly inhomogeneous 3-Sasakian manifolds in [5]. Thus, thanks to Boyer-
Galicki-Mann’s results and due to the technique, we can easily obtain many model
spaces in quaternionic geometry.

2. ALMOST CONTACT METRIC AND SASAKIAN 3-STRUCTURES

Let M be a (2m+1)-dimensional differentiable manifold. An almost contact
metric structure on M is by definition a pair of a Riemannian metric ¢ and an
almost contact structure (¢,&,n), where ¢ is a tensor field of type (1,1), £ is a
vector field and 5 is a 1-form, satisfying the following conditions (cf. Blair [3]):

(2.1) 6 =0, neX)=0, ) =1, ¢*X =-X+n(X)

(2.2) 9(X, &) =n(X), ¢(X,Y) =g(¢X,0Y) +n(X)n(Y)

for any vector fields X, Y on M. An almost contact metric structure (¢,£, 7, ¢) is
called Sasakian if furthermore

(2.3 (Vx@)Y = n(Y)X — g(X,Y)¢
for any vector fields X,Y on M.

Suppose that a differentiable manifold admits three almost contact structures

(8(a), E(a)s M(ey), @ = 1,2, 3, satisfying
) (€(p)) = dap,
(2:4) P(@€(p) = =25 = E()s M) © L) = —N(B) © Pla) = ()
P(@)9(8) ~ &(a) @M(p) = —P(5)P(a) T E&(8) @ Na) = P()

for (e, 3,7) = 1, where ¢(a, 5,v) = 1 means that (a,3,7) is a cyclic permu-
tation of (1,2,3). Then (¢(a),&(a)s M(a)), @ = 1,2,3 is called an almost contact
3-structure. Tt is well known (cf. Kuo [11]) that the dimension of a manifold
with an almost contact 3-structure is 4m + 3 for some non-negative integer m. A
Riemannian metric g is said to be associated to the 3-structure if it satisfies

(2.5) 9D X, 0)Y) = g(X,Y) = o) (X)na(Y), a=1,2,3

for any vector fields X, Y on M. In a manifold with an almost contact 3-structure
there always exists a Riemannian metric g satisfying (2.5), and (¢(a), &(a)s M(a)> 9)>
a=1,2,31s called an almost contact metric 3-structure.

An almost contact metric 3-structure (¢(a),&(a); M(a), 9), @ = 1,2,3 is called
a Sasakian 3-structure if each (¢(a),&(a); M(a), 9) is @ Sasakian structure . Then
{€(1),€(2),&(3)} are orthonormal vector fields, satisfying

[€()s €] = 28

for (e, 3,7v) = 1 (cf. Tachibana-Yu [13], Tanno [14]). A manifold with a Sasakian
J-structure is called a 3-Sasakian manifold.
Remark that a 3-Sasakian manifold is an Einstein manifold (see Kashiwada [9]).
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3. ALMOST QUATERNIONIC HERMITIAN AND QUATERNIONIC KAHLER
STRUCURES

Following Alekseevsky-Marchiafava [1] and Ishihara [8], we recall the definitions
of almost quaternionic Hermitian, quaternionic Kahler and hyperkahler structures.
An almost hypercomplex structure on a manifold M of dimension 4m is by
definition a triple H = (J(a)), @ = 1,2, 3 of almost complex structures, satisfying

(3.1) Ja) gy = Jiv)

for (e, B,v) = 1. By TM we denote the tangent bundle of M. Tt generates a
subbundle @ =< H > of the bundle End(TM) of endomorphisms whose fiber
Qs = RJyle + RJ(2)|e + RJg)]x in a point x € M is isomorphic to the Lie
algebra sp, of the symplectic group Sp(1). Such a subbundle is called an almost
quaternionic structure generated by H. More generally, an almost quaternionic
structure on a manifold M is defined as a subbundle @ C End(TM) of the bundle
of endomorphisms which is locally generated by an almost hypercomplex structure
H. We shall refer to such H as an almost hypercomplex structure compatible with
Q. Let @ be an almost quaternionic structure on M with a Riemannian metric.
Then M can be equipped with a Q-Hermitian metric ¢, that is, all endomorphisms
from @) are skew-symmetric with respect to g. An almost quaternionic structure @
together with a Q-Hermitian metric g is called an almost quaternionic Hermitian
structure and a manifold with such a structure is called an almost quaternionic
Hermitian manifold.

An almost quaternionic Hermitian manifold is called a quaternionic Kahler man-
ifold if an almost hypercomplex structure (J4)), @ = 1,2, 3 in any local coordinate
neighbourhood U satisfies

VxJay = r(X)J2y — a(X)Ja),
(3:2) VxJo = —r(X)Jy) +p(X)Jis),

VxJe = ¢(X)Ja) —p(X)J 2

for any vector field X on U, where V is the Levi-Civita connection of the Rieman-
nian metric, and p, g, r are certain local 1-forms defined in U. In particular, if all
p,q,r for each U are vanishing, then the structure is called hyperkahler.

Remark that if m > 1, a quaternionic Kahler manifold is an Einstein manifold

(cf. Alekseevsky-Marchiafava [2], Ishihara [8]).

4. EXAMPLES OF ALMOST QUATERNIONIC HERMITIAN STRUCTURES

Let (¢(a),&(a), M(a), 9), @ = 1,2,3 be an almost contact metric 3-structure on
a manifold M of dimension 4m+3. By I we denote R or some open interval in
R. For a positive function A on I, we define an almost hypercomplex structure
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(Jiay),a=1,2,30n M x I by

) by 2
(4.1) J(a) =
0

—An(a)
Let a, b be real valued functions on I, satisfying
(4.2) a(t) >0, a(t)+06(t) > 0.
Then, we define a Riemannian metric on M x I by
3
(4.3) g =a(t)g +5(t) Z N(a) ® Na) + dt7,
a=1

where dit? is the usual metric on I. Thus by (4.1) and (4.3) we have the following
(see Nakashima-Watanabe [12]).

Proposition 4.1. Let (¢(a),{(a), N(a),9), @ = 1,2,3 be an almost contact metric
3-structure on a manifold M of dimension 4m+3 and A\ a positive function on 1.
Let a, b be real valued functions on 1, satisfying (4.2). Then (j(a),ﬁ), a=1,2,31is
an almost quaternionic Hermitian structure on M x I if and only if A = /a + b.

In this section, capital Latin indices run on the range 1,2, ..., 4m+4, while small
ones run on the range 1,...,4m+ 3 and A = 4m + 4. Then the components gpc
of g in (4.3) with respect to a natural local coordinate of M x I are given by

) agi; + b3 M(ayiN(a)y; 0
(4.4) (7Bc) =
0 1

The inverse matrix (G42) of (§pc) is given by

ht

b h i
o e 28w 0

0 1

(4.5) (47 =

Let (& (a);€(a) N(a)> 9), @ = 1,2,3 be an almost contact metric 3-structure. By
Ffj we denote the Christoffel symbols of g. Then, using (4.4) and (4.5), the
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Christoffel symbols féc of ¢ are computed as follows:

- 1
Fz’Aj = —§(a/gij +b/277(oc)277( )J)

1 ab’ —a'b
¢ ¢ ¢
Tia = %[aléi + et Zg(a)n( )il

b
¢ = 1“Z - — N
(4.6) Y LT Zg %)

X2 0w (Vingayj + Vingayi)
+ 221 (Vin(ak — Vinia);)

+ 321005 (Vin(as = Vnayi)l,
others = 0,

where () denotes the differentiation with respect to ¢. In particular, if
(D(a)>&(a)s Ma), 9), @ = 1,2,3 is a Sasakian 3-structure, then we have

L =T4+ - Z i (i)

5. EXAMPLES OF QUATERNIONIC KAHLER MANIFOLDS

Let (M, ¢(a),&(a), M(a) 9), @ = 1,2,3 be a 3-Sasakian manifold and a, b be real
valued functions on some open interval I, satisfying (4.2). Then, by Proposition
4.1 we can construct almost quaternionic Hermitian structures (j(a) i), a=1,2,3
on M xT. Then, by using (2.1), (2.2), (2.3), (2.4) and (4.6), we can compute @j(a)
as follows:

S a b
\% ( = (5—\/0-1-[?) ¢(a)ij+§(77(ﬁ)”7( Y = M@ Mi)»

Ry 2vVa+b—a
L7 _
Vi (o)A — 2a ¢(o¢)i

b(2Va+b—d v . .
- { ( 2aa(a +1) aE 2a+b) } (@i’ = € mei),
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o7 b Va+b(2vVa+b—a) 5 —-2Va+b+d -
id(a)] — %4 77(04)] 7 + 2\/m g(oc)glj

2b h b(a/_Q\/a—i‘b) h
= @it = M)id(e)i) + T i) )

20 /aFT - ab + a'b " "
LY S SHUB SO RSEI

ab’ — 4bv/a + b
_|_2a—\/m(77(ﬁ)i77(ﬁ)j + U(v)i”(v)j)g(a)’

others = 0.
In this place, suppose that the following equations hold:

(5.1) Wa+b=d, ab=4bVa+b.

Then we can easily see that (J(4),§), @ = 1,2, 3 is a quaternionic Kahler structure.
Putting a = f? and hence b = fz(fl2 — 1), we see that the metric (4.3) reduces to

(5.1) ﬁzdt2+fzg+f2(f12—1)277(a)®77(a),
and moreover that the equations (5.1) are equivalent to the following OED
(5.2) ' —f2+1=0.

Thus we have the following.

Proposition 5.1. Let (M, ¢ (a),&(a), N(a)), @ = 1,2,3 be a 3-Sasakian manifold.
An almost quaternionic Hermitian structure constructed on M x I such as Propo-
sition 4.1 is quaternionic Kahler if and only if the function f satisfies the ODE

P =P 41=0
with the conditions f > 0 and f' > 0 on I.

Remark 1. After long calculations, i1t is shown that if the almost quaternionic
Hermitian structure mentioned above satisfies the condition (IV) in Alekseevsky-
Marchiafava [1, p.157], then the function f has to satisfy the ODE (5.2).

We shall write down the solutions of ODE (5.2) for later use. Usually, putting
p=f', we have

dp
0o Y
I —pdf,

from which (5.2) reduces to

(5.3)

p
dp = .
P
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Integrating the both sides of (5.3), we have
(5.4) p?—1=kf?,

where k is constant. Recall that p = f/(¢), and that f(¢t) > 0 and f/(t) > 0. We
may, up to a motion of parameter ¢, have that a solution f(¢) of the ODE (5.4) is
of the form:

Casel. k=0.
fy=t, 0<t<oo.
Case 2. k<O0.
f) = \/i_ksinh(\/—kt), 0<t<oo.
Case 3. k> 0.

£(t) = %sin(\/%t), 0<t< %

Thus we now have a generalization of Theorem B in Boyer-Galicki-Mann [5], since
/' = 1in the case k = 0.

Theorem 5.2. Let (M, ¢(a),&(a), N(a);9), @ = 1,2,3 be a 3-Sasakian manifold.
Let f be a real valued function, satisfying the ODE (5.2).

(1) (Boyer-Galicki-Mann) If f(r) = r, then the product manifold M x Rt
with the cone metric in (5.1) is hyperkahler.

(2) If f(r) = ﬁsin h(v/=kr), then the product manifold M x Rt with the
metric in (5.1)" is quaternionic Kahler, where k is a negative constant.

(3) If f(r) = ﬁsin(\/zr), then the product manifold M x (0, ﬁ) with the

metric in (5.1)" is quaternionic Kahler, where k is a positive constant.

Remark 2. In the above theorem, if M = S*"*3 with the canonical metric, then
the manifolds are abstract rotational manifolds in the sense of Hsiang [7], and
the one constructed in (1) (resp. (2), (3)) is a geodesic coordinate neighbourhood
of the quaternionic Euclidean n-space H" with the canonical metric (resp. the
quaternionic hyperbolic n-space HHH” with the canonical metric, the quaternionic
projective n-space HP™ with the canonical metric), where n = 4(m + 1) (see [6]
and [15] for the complex case).



386 Y. WATANABE, H. MORI

REFERENCES

[1] Alekseevsky, D.V., Marchiafava, S., Almost quaternionic Hermitian and quasi-Kdhler
manifolds, Proceedings of the International Workshop on Almost Complex Manifolds
(Sofia, 22-25 Agosto 1993) 150-175.

[2] Bar, C., Real Killing spinors and holonomy, Comm. Math. Phys. 154(1993) 509-521.

[3] Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. (509,
Springer Verlarg, Berlin-Heidelberg-New York, 1976).

[4] Boyer, C.P., Galicki, K., Mann, B.M., Quaternionic reduction and Einstein manifolds,
Comm. Anal. Geom. 1(2)(1993) 229-279.

[5] Boyer, C.P., Galicki, K., Mann, B. M., The geometry and topology of 3-Sasakian manifolds,
J. Reine Angew. Math. 455(1994) 183-220.

[6] Ejiri, N., A generalization of minimal cones, Trans. Amer. Math. Soc. 276(1983) 347-360.

[7] Hsiang, W.Y., On the laws of trigonometries of two-point homogeneous spaces, Ann.

Global Anal. Geom. 7(1989) 29-45.

Ishihara, S., Quaternion Kdhlerian manifolds, J. Differential Geom. 9(1974) 483-500.

[9] Kashiwada, T., A note on a Riemannian spaces with Sasakian 3-structure, Nat. Sci. Rep.
Ochanomizu Univ. 22(1971) 1-2.

[10] Konishi, M., On manifolds with Sasakian 3-structure over quaternion Kdhlerian manifolds,
Kodai Math. Sem. Rep. 26(1975) 194-200.

[11] Kuo, Y.Y., On almost contact 3-structure, Tohoku Math. J. 22(1970) 325-332.

Nakashima, Y., Watanabe, Y., Some constructions of almost Hermitian and quaternion

metric structures, Math. J. Toyama Univ. 13(1990) 119-138.

[13] Tachibana, S., Yu, W.N., On a Riemannian space admitting more than one Sasakian

structure, Tohoku Math. J. 22(1970) 536-540.
[14] Tanno, S., Killing vectors on contact Riemannian manifolds and fiberings related to the
Hopf fibrations, Tohoku Math. J. 23(1971) 313-333.

[15] Watanabe, Y., Mori, H., Geometry on unitary-symmetric Kdhler manifolds, Math. J.

Toyama Univ. 16(1983) 135-193.

)

=
)

Y OSHIYUKI WATANABE

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE,
ToyaMa UNIVERSITY, Tovyama 930, JAPAN

E-mail: YWATNABE@SCI.TOYAMA-U.AC.JP

Hirosur Mort

DEPARTMENT OF MATHEMATICS, JOETEU UNIVERSITY OF EDUCATION
JorTsU, N11GATA PREF. 943, JAPAN

FE-mail: MORIQIJUEN.AC.JP



		webmaster@dml.cz
	2012-05-10T12:44:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




