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AN EXISTENCE RESULT FOR FIRST ORDER INITIAL VALUE
PROBLEMS FOR IMPULSIVE DIFFERENTIAL INCLUSIONS IN

BANACH SPACES

MOUFFAK BENCHOHRA AND ABDELKADER BOUCHERIF

Abstract. In this paper, a nonlinear alternative for multivalued maps is
used to investigate the existence of solutions of first order impulsive initial

value problem for differential inclusions in Banach spaces.

1. Introduction

The theory of impulsive differential equations appears as a natural description of
several real processes subject to certain perturbations whose duration is negligible
in comparison with the duration of the process. Differential equations involv-
ing impulse effects occurs in many applications: physics, population dynamics,
ecology, biological systems, biotechnology, industrial robotic, pharmacokinetics,
optimal control, etc. The reader can see for instance [2], [7], [10], [12], [13], [14],
[16], [17] and [21]. However very few results are available for impulsive differential
inclusions or related topics see for instance [4], [6], [8], [18], and [19].

The fundamental tools used in the existence proofs of all above mentioned works
are essentially fixed point arguments, degree theory, topological transversality or
the monotone method combined with upper and lower solutions.

In this paper, we shall be concerned with the existence of solutions of the first
order initial value problem for the impulsive differential inclusion:

(1.1) y′ ∈ F (t, y) , t ∈ J , t 6= tk , k = 1, ...,m

(1.2) y(0) = y0 ,

(1.3) ∆y|t=tk = Ik(y(tk)) , k = 1, ...,m ,

where F : J × E −→ 2E is a bounded, closed and convex multivalued map,
J = [0, T ] (0 < T < ∞), y0 ∈ E, 0 = t0 < t1 < ..., < tm < tm+1 = T ; Ik ∈
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C(E,E) (k = 1, 2...,m); and E a real Banach space with the norm |.|.
∆y|t=tk denotes the jump of y(t) at t = tk, i.e.,

∆y|t=tk = y(t+k )− y(t−k ) ,

where y(t−k ) and y(t+k ) represent the left and right limits of y(t) at t = tk respec-
tively.

In this paper we shall generalize a recent result for the problem (1.1), (1.2)
without impulse effect (i.e. Ik ≡ 0, for each k = 1, ...,m) considered by the first
author (see [3]). We also generalize to impusive differential inclusions the problem
(1.1)-(1.2)-(1.3) considered by Frigon and O’Regan [7] in the single-valued case.
Our approach is based on a nonlinear alternative for multivalued maps due to
O’Regan ([15]).

2. Preliminaries

In this section, we introduce notations, definitions, and results which are used
throughout the paper.
[a, b] denotes a real compact interval of IR.
AC([a, b], E) is the Banach space of absolutely continuous functions defined on
[a, b] with values in E.
C([a, b], E) is the Banach space of continuous functions from [a, b] into E with
norm

‖y‖∞ = sup{|y(t)| : t ∈ [a, b]} for all y ∈ C([a, b], E) .

Let y : [a, b] −→ E be measurable function. By
∫ b
a
y(s)ds, we mean the Bochner

integral of y, assuming it exists. A measurable function y : [a, b] −→ E is Bochner
integrable if and only if |y| is Lebesgue integrable. For properties of the Bochner
integral see [20].
L1([a, b], E) denotes the Banach space of functions Bochner integrable normed by

‖y‖L1 =
∫ b

a

|y(t)|dt for all y ∈ L1([a, b], E) .

Let (X, ‖.‖) be a Banach space. A multivalued map G : X −→ 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) is bounded in X for each bounded set B of X (i.e. sup

x∈B
{sup{‖y‖ : y ∈

G(x)}} <∞).
G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is
a nonempty, closed subset of X, and if for each open set N of X containing G(x0),
there exists an open neighbourhood M of x0 such that G(M ) ⊆ N. G is said to
be completely continuous if G(B) is relatively compact for every bounded subset
B ⊆ X.

If the multivalued G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph (i.e. xn −→ x0, yn −→ y∗, yn ∈
Gxn imply y∗ ∈ Gx0). G has a fixed point if there is x ∈ X such that x ∈ Gx.
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In the following BCC(E) denotes the set of all nonempty bounded, closed,
convex subsets of E.

A multivalued map G : [a, b] −→ BCC(X) is said to be measurable if for each
x ∈ X the distance between x and G(t) is a measurable function on [a, b].

A multivalued map F : [a, b]× E −→ 2E is said to be an L1-Carathéodory if
(i) t 7−→ F (t, y) is measurable for each y ∈ E;
(ii) y 7−→ F (t, y) is upper semicontinuous for almost all t ∈ [a, b];

(iii) For each k > 0, there exists hk ∈ L1(J, IR+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ hk(t)

for all |y| ≤ k and for almost all t ∈ [a, b] .
For more details on multivalued maps see [1] and [5].
Let J ′ = J\{t1, ..., tm}, Ω = {y : J −→ E : y is continuous for t 6= tk, y(t+k )

and y(t−k ) exist and y(tk) = y(t−k ), k = 1, ...,m }.
Ω1 = {y ∈ Ω : y is differentiable almost everywhere on J′ and y′ ∈ L1(J ′, E)}.
Evidently, Ω is a Banach space with the norm

‖y‖Ω = sup
t∈J
|y(t)| .

We shall refer to problem (1.1), (1.2), (1.3) as (NP). By a solution to (NP), we
mean a function y ∈ Ω1

0 := {y ∈ Ω1 : y(0) = y0} that satisfies the differential
inclusion

y′(t) ∈ F (t, y(t)) almost everywhere on J′ ,

and for each k = 1, ...,m the equation

∆y|t=tk = Ik(y(tk)) .

The following lemmas are crucial in the proof of our main theorem:

Lemma 2.1. [11] Let I be a compact real interval and X be a Banach space. Let
F be a multivalued map satisfying the Carathéodory conditions with the set of L1-
selections SF is nonempty, and let Γ be a linear continuous mapping from L1(I,X)
to C(I,X), then the operator

Γ ◦ SF : C(I,X) −→ BCC(C(I,X)) , y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.2. (Nonlinear Alternative [15]) Let X be a Banach space with C ⊂
X closed and convex. Assume U is a relatively open subset of C with 0 ∈ U and G :
U −→ 2C is given by G = G1 +G2, where G1 : U −→ 2C is a compact multivalued
map, u.s.c. with convex closed values and the single-valued operator G2 : U −→ C
is a nonlinear contraction (i.e., there exists a continuous nondecreasing function
φ : [0,∞) −→ [0,∞) satisfying φ(z) < z for z > 0, such that ‖G2(x)− G2(y)‖ ≤
φ(‖x− y‖) for all x, y ∈ U). Then either,

(i) G has a fixed point in U ; or
(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u ∈ λG(u).
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Remark 2.1. By U and ∂U we denote the closure of U and the boundary of U
respectively.

Let us introduce the following hypotheses:

(H1) F : J ×E −→ BCC(E) has the decomposition F (t, y) = F1(t, y) + f1(t, y)
with F1 : J × E −→ BCC(E) is an L1- Carathéodory multivalued map, f1 :
J × E −→ E a Carathéodory map and for each fixed y ∈ C(J,E) the set

SF1,y = {v ∈ L1(J,E) : v(t) ∈ F1(t, y(t)) for a.e. t ∈ J}
is nonempty;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) −→ (0,∞)
and p ∈ L1(J, IR+) such that

‖F (t, y)‖ := sup{|v| : v ∈ F (t, y)} ≤ p(t)ψ(|y|) for a.e. t ∈ J and each y ∈ E;

(H3) ∫ tk

tk−1

p(s)ds <
∫ ∞
Nk−1

du

ψ(u)
, k = 1, ...,m+ 1 ;

Here N0 = |y0| and for k = 2, ...,m+ 1 we have

Nk−1 = sup
y∈[−Mk−2,Mk−2]

|Ik−1(y)| +Mk−2 , Mk−2 = Γ−1
k−1

(∫ tk−1

tk−2

p(s)ds
)

with

Γl(z) =
∫ z

Nl−1

du

ψ(u)
, z ≥ Nl−1, l ∈ {1, ...,m+ 1} .

(H4) for each bounded set B ⊆ C(J,E), and t ∈ J the set{
y0 +

∫ t

0

v(s)ds : v ∈ SF1,B

}
is relatively compact where SF1,B = {SF1,y : y ∈ B};

(H5) there exist positive constants ak (k = 1, ...,m), q ∈ L1(J, IR+) and a
continuous nondecreasing function φ : [0,∞) −→ [0,∞) satisfying φ(z) < z for
z > 0 such that

|f1(t, y1)− f1(t, y2)| ≤ q(t)φ(|y1 − y2|) for a.e. t ∈ J and each y1, y2 ∈ E ,
and

|Ik(y1)− Ik(y2)| ≤ ak|y1 − y2| for each y1, y2 ∈ E (k = 1, ...,m)
with

‖q‖L1 +
k=m∑
k=1

ak < 1 .
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Remark 2.2. If dim E <∞, then SF1,y 6= ∅ for any y ∈ C(J,E) (see [11]).

We have the following auxiliary result

Lemma 2.3. If y ∈ Ω1, then

(2.1) y(t) = y(0) +
∫ t

0

y′(s)ds +
∑

0<tk<t

[y(t+k )− y(tk)] , for t ∈ J .

Proof. Assume that tk < t ≤ tk+1 (here t0 = 0, tm+1 = T ). Then

y(t1)− y(0) =
∫ t1

0

y′(s)ds ,

y(t2)− y(t+1 ) =
∫ t2

t1

y′(s)ds ,

. . .

y(tk) − y(t+k−1) =
∫ tk

tk−1

y′(s)ds ,

y(t) − y(t+k ) =
∫ t

tk

y′(s)ds .

Adding these together, we get

y(t) − y(0) −
i=k∑
i=1

[y(t+i ) − y(ti)] =
∫ t

0

y′(s)ds ,

i.e. Eq. (2.1) hold.

3. Main Result

Theorem 3.1. (A priori bounds on solutions).
Let y ∈ Ω1 be a (possible) solution to (NP). Then for each k = 1, ...,m+ 1 there
exists a constant Mk−1 such that

sup{|y(t)| : t ∈ [tk−1, tk]} ≤Mk−1 .

Proof. Let y be a (possible) solution to (NP). Then y
∣∣∣
[0,t1]

is a solution to

y′ (t) ∈ F (t, y (t)) for all t ∈ [0, t1] , y (0) = y0 .

Then, it is clear that

y (t) = y0 +
∫ t

0

v (s) ds for v ∈ F (t, y) and t ∈ [0, t1] .
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Set
J0 = {t ∈ [0, t1] : |y(t)| > |y0|} .

Let t∗ ∈ [0, t1] be such that

||y||∞ = max{|y(t)| : t ∈ [0, t1]} = |y(t∗)| .
If t∗ /∈ J0 then y(t) ≡ y0. Otherwise, since y(0) = y0, there exists α ∈ (0, t∗) such
that |y(α)| = |y0| and |y(t)| > |y0| for all t ∈ (α, t∗].
From condition (H2) we infer that

|y(t)| ≤ |y0|+
∫ t

0

p(s)ψ(|y(s)|)ds for a.e. t ∈ (α, t∗] .

Let

u (t) = |y0|+
∫ t

0

p(s)ψ(|y(s)|)ds for a.e. t ∈ (α, t∗] .

Comparing these last two inequalities we see that

|y(t)| ≤ u (t) for all t ∈ (α, t∗] .

Now,
u′ (t) = p(t)ψ(|y(t)|) for a.e. t ∈ (α, t∗)

Since ψ is nondecreasing we have

u′ (t) ≤ p(t)ψ(|u(t)|) for a.e. t ∈ (α, t∗) .

From this inequality, it follows that∫ t∗

α

u′(t)
ψ(u(t))

dt ≤
∫ t∗

α

p(s)ds .

Using the change of variables formula (see [9]), we get

Γ1(u(t∗)) =
∫ u(t∗)

|y0|

dσ

ψ(σ)
≤
∫ t∗

α

p(s)ds ≤
∫ t1

0

p(s)ds .

In view of (H3), we obtain

u(t∗) ≤ Γ−1
1

(∫ t1

0

p(s)ds
)
.

Since
|y(t)| ≤ u (t) for all t ∈ (α, t∗]

it follows that

|y(t∗)| ≤ Γ−1
1

(∫ t1

0

p(s)ds
)

:= M0 .

Therefore
sup

t∈[0,t1]
|y(t)| ≤M0 .

Now, y
∣∣∣
[t1,t2]

is a solution to{
y′ (t) ∈ F (t, y (t)) for all t ∈ [t1, t2]
∆y|t=t1 = I1(y(t1)) .
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Note that

|y(t+1 )| ≤ sup
y∈[−M0,+M0]

|I1(y)| + sup
t∈[0,t1]

|y(t)|

≤ sup
y∈[−M0,+M0]

|I1(y)| +M0 := N1 .

Suppose |y(t)| > N1 for some t ∈ (t1, t2]. Then there exists η ∈ [t1, t) with
|y(s)| > N1 for s ∈ (η, t] and |y(η)| = N1. Thus we have

|y(s)| ≤ N1 +
∫ s

η

p(τ )ψ(|y(τ )|)dτ for a.e. s ∈ (η, t) .

Proceeding as above we obtain

Γ2(|y(t)|) =
∫ |y(t)|

N1

dσ

ψ(σ)
≤
∫ t

η

p(s)ds ≤
∫ t2

t1

p(s)ds .

This yields

sup
t∈[t1,t2]

|y(t)| ≤ Γ−1
2

(∫ t2

t1

p(s)ds
)

:= M1 .

We continue this process and taking into account that y
∣∣∣
[tm,T ]

is a solution to the

problem {
y′ (t) ∈ F (t, y (t)) for all t ∈ [tm, T ]
∆y|t=tm = Im(y(tm)) .

We obtain that there exists a constant Mm such that

sup
t∈[tm,T ]

|y(t)| ≤ Γ−1
m+1

(∫ T

tm

p(s)ds
)

:= Mm .

Consequently, for each possible solution y to (NP) we have

‖y‖Ω ≤ max{Mk−1 : k = 1, ...m+ 1} := b . 2

Now, we are in a position to state and prove our main result.

Theorem 3.2. Suppose that hypotheses (H1)-(H5) are satisfied. Then the impul-
sive initial value problem (NP) has at least one solution.

Proof. A solution of the problem (NP ) is a fixed point for the operator
G : Ω −→ 2Ω defined by

Gy :=
{
h ∈ Ω : h(t) = y0 +

∫ t

0

v(s)ds +
∑

0<tk<t

Ik(y(tk)) : v ∈ SF,y
}

where
SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J} .

SF,y can be written as
SF,y = SF1,y + f1(., y(.)) .
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Hence Gy = G1y + G2y where

G1y :=
{
h ∈ Ω : h(t) = y0 +

∫ t

0

v(s)ds : v ∈ SF1,y

}
and

(G2y)(t) :=
∫ t

0

f1(s, y(s))ds +
∑

0<tk<t

Ik(y(tk)) .

We shall show that G1 is a completely continuous multivalued map, u.s.c. with
convex closed values. The proof will be given in several steps.

Step 1: G1y is convex for each y ∈ Ω.
Indeed, if h, h belong to G1y, then there exist v ∈ SF1,y and v ∈ SF1,y such that
for t ∈ J we have

h(t) = y0 +
∫ t

0

v(s)ds

and

h(t) = y0 +
∫ t

0

v(s)ds .

Let 0 ≤ l ≤ 1. Then for each t ∈ J we have

[lh+ (1− l)h](t) = y0 +
∫ t

0

[lv(s) + (1− l)v(s)]ds .

Since SF1,y is convex (because F1 has convex values) then

lh + (1− l)h ∈ G1y .

Step 2: G1 sends bounded sets into bounded sets in Ω.
Let BR := {y ∈ Ω : ‖y‖Ω ≤ R} be a bounded set in Ω and y ∈ BR, then for each
h ∈ G1y there exists v ∈ SF1,y such that for each t ∈ J we have

h(t) = y0 +
∫ t

0

v(s)ds .

Thus for each t ∈ J we get

|h(t)| ≤ |y0|+
∫ t

0

|v(s)|ds

≤ |y0|+
∫ t

0

hR(s)ds

≤ |y0|+ ‖hR‖L1 .

Step 3: G1 sends bounded sets in Ω into equicontinuous sets.
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Let u1, u2 ∈ J, u1 < u2, BR := {y ∈ Ω : ‖y‖Ω ≤ R} be a bounded set in Ω and
y ∈ BR. For each h ∈ G1y there exists v ∈ SF1,y such that for t ∈ J

h(t) = y0 +
∫ t

0

v(s)ds .

We then have

|h(u2)− h(u1)| ≤
∫ u2

u1

|v(s)|ds

≤
∫ u2

u1

|hR(s)|ds .

Set
U = {y ∈ Ω : ‖y‖Ω < b+ 1} ,

where b is defined in the proof of Theorem 3.1.
As a consequence of Step 2, Step 3 and (H4) together with the Ascoli-Arzela

theorem we can conclude that G1 : U −→ 2Ω is a compact multivalued map.

Step 4: G1 has a closed graph.
Let yn −→ y∗, hn ∈ G1yn and hn −→ h0. We shall prove that h0 ∈ G1y∗.
hn ∈ G1(yn) means that there exists vn ∈ SF1,yn such that

hn(t) = y0 +
∫ t

0

vn(s)ds .

We must prove that there exists v0 ∈ SF1,y∗ such that

h0(t) = y0 +
∫ t

0

v0(s)ds .

Consider the linear continuous operator Γ : L1(J,E) −→ C(J,E) defined by

(Γv)(t) =
∫ t

0

v(s)ds .

We have

‖(hn − y0) − (h0 − y0)‖∞ = sup
t∈J

[(hn(t)− y0)− (h0(t) − y0)] −→ 0 as n −→∞ .

From Lemma 2.1, it follows that Γ ◦ SF1 is a closed graph operator.
Also from the definition of Γ we have that

hn(t) − y0 ∈ Γ(SF1,yn) .

This, besides to yn −→ y∗ and Lemma 2.1, furnishs

h0(t) = y0 +
∫ t

0

v0(s)ds

for some v0 ∈ SF1,y∗ .
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Now, we show that G2 : U −→ Ω is a nonlinear contraction.
For this, let y1, y2 ∈ U In view of (H5) we get

|(G2y1)(t) − (G2y2)(t)| ≤
∫ t

0

|f1(s, y1(s)) − f1(s, y2(s))|ds

+
∑

0<tk<t

|Ik(y1(tk))− Ik(y2(tk))|

≤ ‖q‖L1φ(‖y1 − y2‖Ω) +
∑

0<tk<t

ak|y1(tk) − y2(tk)|

≤ ‖q‖L1φ(‖y1 − y2‖Ω) +
∑

0<tk<t

ak‖y1 − y2‖Ω

≤ ‖q‖L1φ(‖y1 − y2‖Ω) +
(k=m∑
k=1

ak
)
‖y1 − y2‖Ω .

Set

φ(y) = ‖q‖L1φ(|y|) +
(k=m∑
k=1

ak
)
|y| .

Clearly φ : [0,∞) −→ [0,∞) is a continuous nondecreasing function with φ(y) < y
for y > 0.Thus by (H5) we obtain that G2 is a nonlinear contraction.

From the choice of U there is no y ∈ ∂U such that y ∈ λGy for any λ ∈ (0, 1).
As a consequence of Lemma 2.2 we deduce that G has a fixed point y ∈ U which
is a solution of (NP). 2
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