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Abstract. The paper is concerned with the asymptotic estimate of the
solutions of the delay differential equation

ẋ(t) = −a(t)x(t) + b1(t)x(τ1(t)) + b2(t)x(τ2(t))

with the continuous coefficients a(t), b1(t), b2(t) and the unbounded lags.
We derive the conditions under which each solution of this equation can be
estimated in the terms of a solution of the system of Schröder’s functional
equations.
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1. Introduction

We study the functional differential equation

ẋ(t) = −a(t)x(t) + b1(t)x(τ1(t)) + b2(t)x(τ2(t)), t ∈ I = [t0,∞),(1)

where a(t) is a positive continuous function on I, bi(t) are continuous functions
on I, τi(t) are continuously differentiable and unbounded functions on I such that
τi(t0) = t0, τi(t) < t for every t > t0, τ̇i(t0) < 1 and τ̇i(t) are nonincreasing on
I, i = 1, 2. We assume that all these conditions are fulfilled throughout the whole
paper.

⋆ The research was supported by the grant # A101/99/02 of the Grant Agency of the
Academy of Sciences of the Czech Republic
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The investigation of these equations has been motivated by the equation

ẋ(t) = a x(t) + b x(λt), 0 < λ < 1(2)

arising in the problem of the motion of a pantograph head on an electric locomo-
tive. Equation (2) and its modifications has been subject of numerous investiga-
tions (for the methods and results see, e.g., G. Derfel [4] , A. Iserles [6], T. Kato
and J. B. McLeod [7], E. B. Lim [9], Y. Liu [10], G. Makay and J. Terjéki [11],
L. Pandolfi [13] and papers [2], [3]). In this paper, we wish to extend some of the
asymptotic results discussed in these papers to the case of the equation (1).

2. Preliminaries

Choose any σ ∈ I and let σ∗ = min{τi(σ), i = 1, 2}. By a solution of (1) we
understand a real valued function x(t) ∈ C0([σ∗,∞)) ∩ C1([σ,∞)) such that x(t)
satisfies (1) for every t ≥ σ.

The key tool in our investigations is the theory of functional equations in a
single variable. The survey of the methods and results concerning this theory can
be found in the book M. Kuczma, B. Choczewski, R. Ger [8]. In this section, we
mention the problem of the existence of the simultaneous solution of the system
of the Schröder’s equations

ϕ(τ1(t)) = λ1ϕ(t),(3)

ϕ(τ2(t)) = λ2ϕ(t),

where t ∈ I, λ1 and λ2 are suitable reals parameters. We have the following

Proposition 1. Let λ1 = τ̇1(t0), λ2 = τ̇2(t0) and τ1 ◦ τ2 = τ2 ◦ τ1 on I. Then the

system (3) has a solution ϕ(t) ∈ C1(I) with a positive and bounded derivative on

I.

Proof. First we consider a single equation of the system (3), e.g.,

ϕ(τ1(t)) = λ1ϕ(t), t ∈ I.(4)

The existence of the solution ϕ(t) ∈ C1(I) having a positive derivative on I fol-
lows from the classical result of the theory of functional equations (see, e.g., [8]).
Differentiating (4) we obtain

ϕ̇(τ1(t)) =
λ1

τ̇1(t)
ϕ̇(t).

The inequality λ1

/

τ̇1(t) ≥ 1 now implies the boundedness of ϕ̇(t) on I.
It remains to show that ϕ(t) defines also a solution of the latter equation of

(3). This problem has been dealt with in [1] (see also F. Neuman [12] and M.
Zdun [14]). By Proposition 3 of [1], the necessary and sufficient condition for the
existence of the simultaneous solution ϕ(t) of (3) is the commutativity of the
couple τ1(t), τ2(t). ⊓⊔

Remark 1. The required solution of (3) can be given in several important cases
explicitly. These cases are discussed in Section 4.
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3. Asymptotic behaviour of the solutions

In this section, we mention the main result concerning equation (1).

Theorem 1. Let τ1(t), τ2(t) be commutable functions on the interval I. Let λ1 =
τ̇1(t0), λ2 = τ̇2(t0) and let ϕ(t) ∈ C1(I) be a solution of (3) with a positive and

bounded derivative on I. Let x(t) be a solution of (1), where a(t) ≥ K
/

(ϕ(t))β

and 0 < |b1(t)|+ |b2(t)| ≤ La(t) for every t ∈ I and suitable reals K,L > 0, β < 1.
Then

x(t) = O((ϕ(t))α) as t → ∞, α =
log L

log λ−1
, λ = max(λ1, λ2).(5)

Proof. The function ϕ(t) is obviously positive for all t > t0. Then the substitution

s = log ϕ(t), z(s) = (ϕ(t))−αx(t),(6)

where t > t0, converts equation (1) into the form

z′(s) = −(a(h(s))h′(s)+α)z(s)+b1(h(s))λαh′(s)z(s−c1)+b2(h(s))λαh′(s)z(s−c2),

where s ∈ J = [s0,∞). Here ”′” means d
/

ds, h(s) ≡ ϕ−1(es) on J , c1 = log λ−1
1 ,

c2 = log λ−1
2 and s0 > log ϕ(t0). Then

d

ds

[

exp{αs +

∫ h(s)

s0

a(u) du}z(s)

]

=(7)

b1(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c1)

+b2(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c2).

Due to the boundedness of ϕ̇(t) on I

1

h′(s)
=

ϕ̇(h(s))

ϕ(h(s))
= O(e−s) as s → ∞.

From here we get

a(h(s))h′(s) ≥ Me(1−β)s(8)

for a suitable real M > 0 and every s ≥ s0. Then we can choose d0 ≥ s0 such
that α + a(h(s))h′(s) > 0 for every s ≥ d0. Put c = min(c1, c2), di = d0 + ic,
Ji = [di−1, di] and Mi = max{|z(s)|, s ∈ ∪i

k=1Jk}, i = 1, 2, . . . . If we choose any
s∗ ∈ Ji+1, then we can integrate (7) over [di, s

∗] to obtain

exp{αs +

∫ h(s)

s0

a(u) du}z(s)
∣

∣

s∗

di

=

∫ s∗

di

b1(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c1) ds

+

∫ s∗

di

b2(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c2) ds.
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Then

z(s∗) = exp{α(di − s∗) −

∫ h(s∗)

h(di)

a(u) du}z(di)

+ exp{−

∫ h(s∗)

s0

a(u) du − αs∗}

×(

∫ s∗

di

b1(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c1) ds

+

∫ s∗

di

b2(h(s))λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du}z(s− c2) ds).

Consequently,

|z(s∗)| ≤ Mi exp{α(di − s∗) −

∫ h(s∗)

h(di)

a(u) du}(9)

+Mi exp{−

∫ h(s∗)

s0

a(u) du − αs∗}

×

∫ s∗

di

(|b1(h(s))| + b2(h(s))|)λαh′(s) exp{αs +

∫ h(s)

s0

a(u) du} ds

≤ Mi exp{α(di − s∗) −

∫ h(s∗)

h(di)

a(u) du}

+Mi exp{−

∫ h(s∗)

s0

a(u) du − αs∗}

×

∫ s∗

di

a(h(s))h′(s) exp{αs +

∫ h(s)

s0

a(u) du} ds.

Now we estimate the last integral as
∫ s∗

di

a(h(s))h′(s) exp{αs +

∫ h(s)

s0

a(u) du} ds ≤

exp{αs +

∫ h(s)

s0

a(u) du}
∣

∣

s∗

di

+ |α|

∫ s∗

di

exp{αs +

∫ h(s)

s0

a(u) du} ds.

Rewrite the last term as

|α|

∫ s∗

di

exp{αs +

∫ h(s)

s0

a(u) du} ds =

∫ s∗

di

|α|

α + a(h(s))h′(s)

d

ds
[exp{αs +

∫ h(s)

s0

a(u) du}] ds.

Notice that due to (8)

|α|

α + a(h(s))h′(s)
= O(exp{(β − 1)s}) as s → ∞.
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Put γ = 1 − β > 0. Then

∫ s∗

di

|α|

α + a(h(s))h′(s)

d

ds
[exp{αs +

∫ h(s)

s0

a(u) du}] ds ≤

N

∫ s∗

di

e−γs d

ds
[exp{αs +

∫ h(s)

s0

a(u) du}] ds ≤

Ne−γdi exp{αs +

∫ h(s)

s0

a(u) du}
∣

∣

s∗

di

for a suitable N > 0. Consequently,

∫ s∗

di

a(h(s))h′(s) exp{αs +

∫ h(s)

s0

a(u) du} ds ≤

exp{αs +

∫ h(s)

s0

a(u) du}
∣

∣

s∗

di

(1 + N e−γdi).

Substituting this back into (9) we obtain

|z(s∗)| ≤ Mi exp{α(di − s∗) −

∫ h(s∗)

h(di)

a(u) du}

+Mi exp{−

∫ h(s∗)

s0

a(u) du − αs∗}

× exp{αs +

∫ h(s)

s0

a(u) du}
∣

∣

s∗

di

(1 + N e−γdi)

≤ Mi(1 + N e−γdi).

Consequently,

Mi+1 ≤ Mi(1 + N e−γdi) ≤ M1

i
∏

k=1

(1 + N e−γdk), i = 1, 2, . . . .

Letting i → ∞ we can see that the infinite product

∞
∏

k=1

(1 + N e−γdk)

converges. This implies that (Mi) is bounded as i → ∞, hence z(s) is bounded
as s → ∞. Substituting this back into (6) we obtain the asymptotic property (5).
This completes the proof. ⊓⊔

Remark 2. The validity of the previous statement can be easily generalized to the
case when equation (1) with m delayed arguments is considered.
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Remark 3. It is easy to verify that the function ω(t) =
(

ϕ(t)
)α

occuring in (5)
defines the solution of the functional equation

ω
(

τ(t)
)

=
ω(t)

L
,

where τ(t) = max
(

τ1(t), τ2(t)
)

, t > t0.

4. Applications

In this section, we specify delays τ1(t), τ2(t) in (1) to illustrate our asymptotic
result.

Example 1. We consider the equation

ẋ(t) = −a(t)x(t) + b1(t)x(λ1t) + b2(t)x(λ2t), t ∈ I = [0,∞),(10)

where 0 < λ1 < λ2 < 1, a(t), b1(t), b2(t) ∈ C0(I). The corresponding system of
Schröder’s equations is

ϕ(λ1t) = λ1ϕ(t),

ϕ(λ2t) = λ2ϕ(t)

and admits the identity function ϕ(t) = t as the required solution. Then we can
reformulate the main result as follows:

Let a(t) ≥ K
/

tβ , 0 < |b1(t)|+ |b2(t)| ≤ La(t) for every t ∈ I and suitable reals
K, L > 0 and β < 1. If x(t) is a solution of (10), then

x(t) = O(tα) as t → ∞, α =
log L

log λ−1
2

.

This asymptotic estimate generalizes some parts of [7], [11] and [3]. Particularly,
if we consider the equation

ẋ(t) = β1(t)[x(λ1t) − x(t)] + β2(t)[x(λ2t) − x(t)], t ∈ I(11)

(i.e. L = 1), where β1(t), β2(t) ≥ K
/

tβ for every t ∈ I and suitable reals K > 0,
β < 1, then all the solutions of (11) are bounded. We note that equation (11) with
βi(t) < 0 and constant delays has been investigated by J. Dibĺık [5].

Example 2. Now we investigate the asymptotic behaviour of the solutions of the
equation

ẋ(t) = −a(t)x(t) + b1(t)x(tγ1) + b2(t)x(tγ2), t ∈ I = [1,∞),(12)

where 0 < γ1 < γ2 < 1, and a(t), b1(t), b2(t) ∈ C0(I). It is easy to verify that the
corresponding system of Schröder’s equations

ϕ(tγ1) = γ1ϕ(t),

ϕ(tγ2) = γ2ϕ(t)
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has the solution ϕ(t) = log t. Substituting this into (5) we get that if a(t) ≥
K

/

(log t)β and 0 < |b1(t)| + |b2(t)| ≤ La(t) for every t ∈ I and suitable reals
K, L > 0, β < 1, then

x(t) = O
(

(log t)α
)

as t → ∞, α =
log L

log γ−1
2

for all the solutions x(t) of (12).
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