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Časopis pro pěstování matematiky, roč. 91 (1946), Praha 

THE INVESTIGATION OF THE EXISTENCE OF MAXIMAL 
SUBGROUPS OF SOME SIMPLE GROUPS 

LADISLAV BERAN, Praha 

(Received January 26, 1964) 

Since the existence of a simple group without maximal subgroups is an unsolved 
problem (compare e.g. [3]), it is interesting to examine from this point of view some 
of the known simple groups. As concerned with the question of simplicity of mentioned 
groups see detailed description in [1]. 

The investigation was carried out by using appropriate systems of generators. The 
systems of generators of the groups Spn(k), On used here — as far as I know — are 
new. 

I. 

In this paragraph we denote by 9K an arbitrary set of at least five elements. The 
symmetric group @(9W) of the set 9W is the group of all one-to-one mappings of the 
set 9H onto itself, which change only a finite number of elements. The alternating 
group $t(9Jt) is defined as the subgroup of €>(9Jt) of index 2 in the usual way. Let us 
denote Ha & subgroup of 9I(9M) which consists of all permutations s which leave the 
element a unchanged: s(a) = a. 

We have 

1) Every permutation of 9I(9fli) is a product of a finite number of cycles containing 
three elements. 

2) If u s a permutation such that t(a) = b9 then tHat~
l = Hb. 

Theorem 1.1. The group Ha is a maximal subgroup o/2l(9K). 

Proof. Obviously Ha € 9l(9M) and if we assume for some subgroup G 

flflCGc 9I(9H), 

then there is an element seG9s$Ha. Write s(a) = fc, b # a. Let us choose arbitrarily 
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ml9 m2 € 9M, such that mt 4= m2, mt * a, mf 4= fc for i = 1, 2. Then (mu m2, fc) € Ha 

for fc * a, (mum2>k)€Hb for fc # fc. But G => sH^""1 = Hb which implies 
(mlf m2, a) 6 G„and therefore G =-= 9l(2R). 

n. 
Definition 2.1. The group of all the square matrices of n rows with elements in 

a skew field fc and having the determinant equal to 1 *), will be denoted by SLn(k), 
where n J£ 2. 

This group — as it is well known — is generated by all the matrices Ul7(A), where 
Bi/X) is a matrix, which has the identity element in the principal diagonal and in the ij 
position (? =4= j) the element A, the others elements being zeros. 

The center Z of this group consists of all matrices Lof the form 

L = 

where a belongs to the center of the group fc* (k* is a multiplicative group of fc) and 
det L - 1. 

Definition 2.2. The factor group SLn(k)\Z will be denoted by PSLn(k). 

Theorem 2.3. All the matrices of the form 

(c " " " ) 
(where the indices indicate the type of the matrix, N is the zero matrix), which 
belong to SLn(k), form a maximal subgroup of the group SLn(k). We shall denote it 
by MSLjk). 

The proof is carried out by investigation of a subgroup G for which MSLn(k) e 
C G c SLjk). This subgroup necessarily contains a matrix 

(2) I" °2 •- a"), 3(at + 0,2^„) 
\Bn^t,i An„lfn„xJ k 

and also all generators B^X) which belong to MSLn(k). Using them, (2) can be 
modified by suitable multiplication on the right and on the left into an arbitrary 
matrix of the form Bln(v) and Bln(v) further to an arbitrary matrix Bi/v), 2 ^ jf ^ »> 
which means that G contains all generators uf SLn(k)9 and hence G = SLn(k). 

%) Pot the definition of the determinant over a skew field see [1], Chap. IV. 
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From here, the statement about the maximal subgroup of the group PSLn(k) 
follows easily. 

Theorem 2.4. The group MSLn(k)jZ is a maximal subgroup of PSLn(k). 

Ш. 

Definition 3.1. A matrix A is said to be s-orthogonal if A'SA = S, where Ar 

denotes the transpose of the matrix A and where 

S = 

0 1 0 0 ... 0 0 
1 0 0 0 ... 0 0 
0 0 0 1 . . . 0 0 
0 0 - 1 0 . . . 0 0 

0 0 0 0 ... 0 1 
0 0 0 0 ... - 1 0 

The group Spn(k) will be considered as a group of all square matrices of n rows which 
are s-orthogonal; n is even, n = 2, k is a commutative field. 

The center Z of Spn(k) consists of ±E. 

Definition 3.2. The factor group Spn(k)\Z will be denoted by PSpn(k). 

Definition 3.3. Let i be an integer, 1 g i «£ n. We associate the integer i with the 

integer i in the following manner: 

i = i — 1 for i = 0 mod 2 , i = j + 1 for i s 1 mod 2 . 

For i =f= j we write DU(X) = (drs), where 

drr=l for 1 = r = n, rfIy = A, dn = eA, e = ( - l ) l ' ~ i + 1 , 

the other drs = 0. 
It follows easily that D{j(X) e Spn(k). 

Theorem 3.4. The group Spn(k) is generated by all matrices Dy(A), k e fc, 1 «£ i <T 
= n, 1 £ j = n. 

Proof. Let us consider an s-orthogonal matrix A = (atj). It can happen that the 
element atl is the unique non-zero element in the first column. In this case let us 
multiply the matrix A on the left by matrix D2i(l). Hence, we obtain a non-zero 
element a2i- Then, it can be supposed that an m exists, 2 ^ m ^ n, for which 
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ami 4= 0. Let us multiply the matrix A on the left by the matrix Dlm((l - a u ) aml). 
In this way we get a matrix 

(3) 

'1 al2 

a2í a22 

\aní an2 
Here we should write more correctly a"j instead of afj.; to simplify the notation we 
omit the commas. We shall often proceed similarly. 

We multiply the matrix (3) on the left by matrices DJt(—aJt) for 2 < j S n- The 
matrix (3) will get the form of the matrix 

i " 1 2 ••• " l n ^ 

*2\ a22 ... a2n 

*32 ... a. 

'0 an2 ... a'm 

Then, we multiply also on the left by matrix D2i( —a2i) a nd we obtain a matrix of 
the form 

fi ai2 ... qlt^ 
0 a22 ... a2n\ 

0 af
n2 ... an 

Now we shall use the induction. Let j = 2 and suppose we have already adjusted 
the (j — l)-th column of the matrix A and therefore for the j — 1 first columns the 
following equalities 

akm = $km for 1 £ k = n9 1 = m g ; - 1 

hold. Here is, as usual, 5kk = 1 and 8km = 0 for k 4= m. 
We will show that also thej-th column can be brought to this form. 
a) Let / be odd. 

Then akJ = 0 for 1 S k £ j - 1; for, the matrix being transformed is also s-ortho-
gonal. The remaining akj (i.e. k > j — 1) cannot be all zeros and if we proceed in 
a similar way as in the first column we get 

dn = 1, akJ = 0 for j < k = n . 

b) Let j be even. 
The considered matrix is s-orthogonal; hence, 

auj m 0 for 1 <£ k < j - 1, ajj = 1. 

Now we multiply successively on the left by the matrices Dkj(-akj) for all fc, j• < k <£ 
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f£ n; in this way we obtain an element a'j^1 tj (for J = j — 1); then we multiply on the 
left by the matrix -Dy-i,/—a}_i j). 

Jn both cases we continue till we arrive to the w-th column. In this manner we 
obtain the unit matrix. Taking into account the fact, that the matrix D^—X) is 
inverse to the matrix D^X), we obtain the statement of the theorem. 

Theorem 3.5. All matrices of the form 

\ Q - 1 , 1 ^ n - l . n - 1 / 

(where X e k, X #= 0), which belong to Spn(k),form a maximal subgroup of the group 
Spn(k); we shall denote it by MSpn(k). 

The proof is based on the same idea as the proof of the Theorem 2.3. We do not 
give it here, because it is too long. The large extent of the proof is caused — amongst 
other things — by the necessity to examine separatly the case of the field of the 
characteristic 2 (see [2]). 

The result for PSpn(k) is obtained now easily. 

Theorem 3.6. The group MSpn(k)jZ is a maximal subgroup of PSpn(k). 

IV. 

In this paragraph we turn our attention to the square matrices of n rows with 
elements in the field of real numbers. It is supposed n _- 3. 

Definition 4.1. A matrix A is said to be orthogonal if A A' = E; it is said to be 
properly orthogonal if it is orthogonal and det A = 1. The group of all the orthogonal 
matrices will be denoted On, the group of all the properly orthogonal matrices On. 

The center of the group On is E for n odd, ±E for n even. 

Definition 4.2. We shall denote by FtJ(x9 y) (i 4= j) the matrix (/rs), where 
fa = *> fn = *> fu = y> fji = -y» frr = 1 for r # i, r =f= j , frs = 0 otherwise, 
and where, moreover, x2 + y2 = 1, x, y being real. 

It is easily to be seen that Fu e On. 

Theorem 4.3. The group On is generated by all matrices Fu(x, y), 1 ^ i <£ n> 
1 = j = n. 

Proof. Let us take a properly orthogonal matrix A. If alt =-= 0, then a j > 1 exists 
so that aji 4= 0. Let us multiply the matrix A by the matrix FJt(0, — 1) on the left. 
In this way we shall get in the first place the element a'lt = atJ # 0. Therefore we 
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can suppose ati * 0. Let us choose arbitrarily I > 1. We shall prove that multiplying 
by the matrices FtJ we can achieve an = 0. 

If we multiply the considered matrix on the left by the matrix Fn(x9 y), we get 
a'jt » xan •+• yaiv By a convenient choice of x, y we achieve aj t = 0 for 1 < j <£ n. 
Then, necessarily a u = ±1 . If ati = —1, let us multiply the matrix on the left 
by Fii(—U 0); then a'ti = 1 (for/ > 1 we have still a'n = 0). Since the considered 
matrix must be properly orthogonal, it is of the form 

.. an 

Suppose we have already adjusted in this way the first j — 1 columns of the original 
matrix so that 

aim = <5/m, 1 S 1 £ n , 1 <| m <i j - 1 . 

Here the elements akj for 1 g k <I j — 1 must be equal 0. In the same way as for the 
first column, we get first an 4= 0 and then akj = 0 for j < k <£ n with an = ± 1 ; 
in the case j < n we make aj7 = +1 if multiplying on the left by the matrix 
Fj+t j(— 1, 0); in the case j = n must be ann = 1 — it follows from the fact that 
AB On, FtJ€ On. Therefore, it is possible by multiplying by the matrices Fu(x, y), 
to bring an arbitrary matrix A to the unit matrix. If doing so we have to use the fact 
that Fj/x, y) is an inverse matrix to Ftj(x, —y). The theorem follows. 

Theorem 4.4. AU the properly orthogonal matrices of the form 

8 = + 1 , 
\N.-U1 A„-Un-J' 

constitute a maximal subgroup of On; we denote this group by MOn. Obviously 
MO: S O„.V 

This theorem can be proved by reducing the case with general n to the case n = 3 
which can be handled more easily. (See [2]). Hence we have 

Theorem 4.5. The group MOn\Z is a maximal subgroup of the group On\Z. 

V. 

Definition 5.1 Let us consider the groups SL2(k), SL3(k),... and the isomorphisms 
Wi mapping SL$c) into SL^^k) so that 

A eSLfà => 9ІЛ) - (£ 1" \ ; 

m 



in this way a unique group is determined. It is the union of the increasing sequence of 
the groups SL^k) (i = 2, 3,...) 2). We shall denote it by SLM(k). 

Further let us take into consideration the groups 

(4) Sp2(k),Sp4(k)9... 

and the isomorphisms <pt mapping Spt(k) into Spi+2(k) defined by 

\^2,i E2<2J 

Again, in this way a unique group is determined which is the union of the increasing 
sequence of the groups (4). We shall denote it by Spjk). 

Finally, let us take into consideration the groups 

(5) ot,o:,... 

and the isomorphisms <p{ mapping O + into O iJr x defined by 

A.OÎ-.Ю.Ç/J). 

In this way a unique group is determined which is the union of the increasing 
sequence of the groups (5). We shall denote it by 0 + . 

Theorem 5.2. The groups SLjk), Spjk) and 0 + are simple. 

Proof. We will show it e.g. for SLjk). The proofs for the other groups are similar. 
If M belongs to a normal subgroup of SL00(/c), then an n exists such that the matrix 
Mnn corresponding to M is an element of SLn(k) and we have 

(a 0 ... 0\ 

? ? " • ? , detMn,B-=l; 

6 6 ... a/ 

for, Mn>n is in a normal subgroup of SLn(k) and, hence, it belongs to the center. 
Similarly, 

ffiO ... 0\ 
10 j? ... 0 J Af.+ ̂ + i = > detMn+1>ll+1 = 1, 

\0 0 ... fif 

where q>n(MntH) =- Mu+i++v Therefore, a - p « 1 and thus MHtH = E. 

2) See[4],pp. 67-68. 
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By means of the above mentioned isomorphisms we get from the subgroups 
MSLn(k), MSpn(k), MOn further groups which we denote by MSL^k), MSPQ0(fc), 
MOt 

The following theorem is then an immediate Consequence of the theorems 2.3, 3.5, 
4.4. 

Theorem 5.4. The groups MSL^k), MSp00(fc), MO* are maximal subgroups of 
the groups SL^k), Sp^k), 0+, respectively. 

In conclusion I wish to express my gratitude to Prof. VL. KOSINEK for his advice 
and help during the work. 
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Výtah 

VYŠETŘENÍ EXISTENCE MAXIMÁLNÍCH PODGRUP 
JISTÝCH JEDNODUCHÝCH GRUP 

LADISLAV BERAN, Praha 

V článku jsou popsány maximální podgrupy Ha, MSLn(k)jZ, MSpn(k)jZ, MOnjZ 
grup Sl(9K), PSLn(k), PSpn(k), (tf/Z. 

V grupách SLn(k)> Spjk), On jsou maximální například podgrupy matic tvaru (1), 
kde na A, Cn_i,i> .4«-i-N-:t jsou kladeny odpovídající podmínky. 

Z uvažovaných grup jsou metodou nití konstruovány jiné jednoduché grupy, v nichž 
jsou opět udány jisté maximální podgrupy. 
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Резюме 

ИССЛЕДОВАНИЕ СУЩЕСТВОВАНИЯ МАКСИМАЛЬНЫХ 
ПОДГРУПП НЕКОТОРЫХ ПРОСТЫХ ГРУПП 

ЛАДИСЛАВ БЕРАН (Ьа«Ш1ау Вегап), Прага 

В статье описаны максимальные подгруппы На9 М8^п(к)|29 М8рп(к)1Ху 

МО* 12 групп ЩЩ9 Р8^п(к)9 Р8рп(к)9 О:/2. 
В группах 8^п(к)9 8рп(к)9 Оп являются, например, максимальными подгруппы 

матриц вида (1), где на А, СИ_ 1 Д, Ап„ип„г наложены соответствующие условия. 
Из рассматриваемых групп конструированы методом нитей другие простые 

группы, в которых снова определены некоторые максимальные подгруппы. 

19? 


		webmaster@dml.cz
	2012-05-11T22:22:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




