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HASSE’S OPERATOR AND DIRECTED GRAPHS

BOHDAN ZELINKA, Liberec

(Received January 31, 1966)

In [1] the following problem by K. CuLix is given:

The graphs considered are sets together with a binary relation which is defined
in them.If M is a set and 6 = M x M, then To denotes the transitive closure of o.
Further we define Ho = {(u, v) € 0; there is no directed path (wy, ..., ) in [M, o]
such that k > 3 and wy = u, w, = v}. If (Wy, ..., wy) is a path in [M, c], then
(Wi, wigy) €0 fori=1,2,...,k — 1. We speak about the transitive closure operator
T and Hasse’s operator H. A partially ordered set is a graph [M, ¢], where ¢ =
© M x M is an asymmetric and transitive relation (i.e. it is also irreflexive).

If M is a finite set, then THg = ¢ and [M, Hg)] is said to be the Hasse’s graph of
the partially ordered set [M, ] (this is closely related to the well-known Hasse
diagram of [M, ¢, see [2]). If M is an infinite set, the equality THo = ¢ is not
valid in general, but it always holds that THg < g. Thus, if we put x > y instead of
(x, y) e @, we can define [M, ¢] as follows: x,e M for i =0,1,2,...; x, > x, >
>...>%x;> ... and x; > xo for all i = 1,2, ... In this case THg % ¢. On the
other hand, if we add a new vertex w to M and define u; > w foralli = 1,2, ...,
but w > u,, then for this new partially ordered set [M’, ¢"] we have THo' = ¢'.

a) Find necessary and sufficient conditions concerning ¢ for THp = g, if [M, ¢]
is an infinite partially ordered set.If M = V*® and g = TCR(V ™, C-operator and R
are defined in [3]), then g is transitive, but need not be asymmetric.

b) Isit always true that TCR = THTCR?If not, what are necessary and sufficient
conditions concerning R that this equality holds?

Remark. The vertices w;, ..., w, need not be all different.

Here we shall give a solution of the problem a) and a partial solution of the
problem b).

Before turning to the solution of the problem we shall define some concepts. If
a partially ordered set [M, ¢] is given, then N = M is a maximal chain of the set
[M, ¢], if N is a chain (a totally ordered set) in the ordering induced by the ordering
of the set M and there does not exist any subset of M which would contain N as
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a proper subset and would be a chain. If a, b are two elements of a partially ordered
set [M, ¢] and (a, b) € ¢, then the closed interval {a, b is by definition a set con-
sisting of the elements a and b and all elements x for which simultaneously (a, x)€eg
and (x, b) € ¢ holds.

From the above considerations it follows that we shall have to deal with directed
graphs which do not contain multiple edges, but may contain loops.

Theorem 1. Let [M, ¢] be an infinite partially ordered set. The equality THo = ¢
holds if and only if for each two elements a, b of the set M such that (a, b)€ ¢
there exists a finite maximal chain of the interval {a, b).

Proof. Let the condition be fulfilled. Let a, b be arbitrary two elements of M for
which (a, b) € ¢ holds. Therefore, there exists a finite maximal chain N = {a =
= Xy, X3, ..., X, = b} of the interval {a, b) so that (x;, x;)egfor 1 < i< j< m.
As N is a maximal chain of the interval {qa, b), forno i = 1, ..., m — 1 there exists
y € M such that (x;, y) € ¢, (¥, X;+,) € @. In such a case {X;, ..., Xi, ¥, Xi415 +-vr X}
would be a chain which would be a subset of {a, b) and contain N as a proper
subset. Thus, (x;, x;+,) € Hgforalli = 1, ..., m — 1. If we now apply the transitive
closure operator, we get (a, b) = (x,, x,,) € THg. As we have chosen a and b quite
arbitrarily, we have proved that ¢ = THpg and therefore ¢ = THg (because we know
that the inverse inclusion holds).

Now let ¢ = THp hold. Let us have two elements a, b of M such that (a, b) € ¢;
therefore also (a, b) € THp. According to the definition of the transitive closure
operator there exists a finite subset N = {x,, ..., x,,} of the set M such that a = x,,
b = x,, (x;, x,4+,) € Ho for i = 1,...,m — 1. This set is a maximal chain of the
interval {a, b). Actually, if a set N’ existed which would contain N as a proper
subset and would be a chain, then there would exist an element y such that (x;, y) €
€9, (y, X;+1) € ¢ for some i. Then there would exist a path consisting of the vertices
Wy = X;, Wy =y, w3 = X, and thus (x;, x;4,) ¢ Ho; in such a manner we obtain
a contradiction. '

. We shall now generalize Theorem 1.

Theorem 2. Let o be a relation on the set M. The equality THTo = To holds if
and only if the graph [M, o] is acyclic and for its transitive closure [M, To] the
condition of Theorem 1 holds.

Proof. If [M, o] is acyclic, its transitive closure [M, To] is a partially ordered
sét and we can apply Theorem 1. Thus, let us suppose that there exists at least one
directed circuit D in [M, o]; let its vertices be ay, ..., a, and let (a; a,+,) € o for
i =1,.., k= 1and (g a,) € ¢ hold (Fig. 1). Then evidently for arbitrary i, j from
the numbseis' 1, ..., k we have (a,, a;) € To, because a directed path from g, to a;
exists which is a subgraph of the circuit D. The subgraph of the graph [M, To]
generated by the vertices d, ..., a, is therefore a complete directed graph. Further,
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for arbitrary i, j from the numbers 1, ..., k we have (a; a ;) ¢ HTo; for arbitrary !
from the numbers 1, ..., k particularly (a;, a,) € To, (a;, ;) € To, i.e. there exists
a directed path with the vertices w, = a,, w, = a,, w3 = a;. The subgraph of the
graph [M, HTo] generated by the vertices a;, ..., a, is therefore a graph without
edges. If (a,, a;) € THTo held for some i, j from the numbers 1, ..., k, this would

[M.el [n,Te [nate] [MTHTo)
a, d a . XA Qo 00,
% a AA\ g/ &° °a, ap °a,
9 » a a’ %, a’ ‘a,
Fig. 1.

mean that there exist elements b,, ..., b, of M such that (a,, b,) € HTs, (b, a;) €
€ HTo and (b,,, b,+1)€HTo forn = 1,..., m — 1. Let p be the least positive integer
such that the element b, is equal to some of the elements a, ..., ax. Thus, b, = a,
for some g, 1 < q < k, and none of the elements by, ..., b,_, is equal to any of the
elements a,, ..., a,. Without loss of generality let g > i. The elements ay,..., a;,
by, ..., b,_1, a, ..., a, therefore form a directed circuit in [M, ] (as H Ta c o),
so that the subgraph of the graph [M, HTo] generated
by them will be without edges, which leads to a con-
tradiction. Consequently, also the subgraph of the
graph [M, THTo] generated by the vertices a;, ..., a;
is without edges. That is why THTo =+ To.

About the graph [V®, CR] we shall give only a few
remarks. At first we shall give definitions. V is a finite
set called the alphabet, V*® is the set of all words on
this alphabet. R is a certain finite relation on ¥* and
its elements are called rules. CR is a relation consisting:
of all pairs (xay, xby), where (a, b) e R and x, y are
arbitrary words from V' (they may be empty).

The necessary condition for THTCR = TCR is
that [V, CR] is acyclic. We can prove that this con-
dition is not sufficient. Let us have V={a, b}, se
R = {(a, aa), (a,b),(bb,b)}. Then (a,b)eTCR Fig. 2.
but (a, b) ¢ HTCR, because the directed path with
the vertices w, = a, w, = aa, w3 = ab, w, = bb, ws = b exists. However, at
every inference of b from a we must apply the rule (a, b) € R as other two rules
would not suffice. If we have an arbitrary directed path with the vertices a = ¢, ..

xby
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.s € = b, where (¢;,.¢;.,) € CR for i = .. k — 1, we have ¢; = xay, ¢;4; =
= xby for some #; theréfore, (c;, €;41) ¢ H TC?! as also (a, b) ¢ HTCR. Thus, there
does not exist a path a = d, ..., d; = b such that we had (d,, d;.,) e HTCR for
eachi = 1,...,1 — 1 (Fig. 2).

An open problem remains, what is the necessary and sufficient condition for R
under which the graph [V=, CR] might be acychc and the graph [V, TCSR] might
fulfill the condition of Theorem 1.
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Vytah
HASSEUV OPERATOR' A ORIENTOVANE GRAFY

BOHDAN ZELINKA, Liberec

V &dnku se zkoumd orientovany graf [M, ¢] jako mnoZna M s bindrni relaci o.
UvaZuji se dva operdtory, operdtor transitivniho uzdvéru T a Hasseliv operdtor H,
ktery je definovdn takto: plati Ho = {(u, v) € 0; neexistuje orientovany tah (wy, ...

. W) v [M, o] takovy, Ze k = 3 a w; = u, w, = v}. Dokazuji se dv& véty, které
JSO\I E4steénym FeSenim problému K. Culika.

Véta 1. BudiZ [M, o] nekonecnd ¢dstené usporddand mno%ina. Plati THe = ¢
prdvé tehdy, existuje-li ke kaZdym dvéma prvkiim a, b mnoZiny M, pro né#(a, b) € ¢,
koneény maximdini Fetézec, ktery je podmnoZinou intervalu {a, b).

V¥a 2. Budif o relace na mno%iné M. Rovnost THTo = To plati prdvé tehdy,
Jjestlite graf [M a] Je acyklicky a pro jeho transitivn{ uzdvér [M, To] plat{ pod-
minka z véty 1.

.- Zévérem se vysledky aplikuji na matemanckou lingvistiku.
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Pe3ome
OITEPATOP XACCE MU HAIIPABJIEHHBIE I'PA®BI

BOI'TAH 3EJIMHKA (Bohdan Zelinka), JTuGepery

B craTbe uccieayeTcs HanpasieHHbIA rpad [M, o] xak MaOXecTBO M C 6MHApHBIM
OTHOLIeHWEM ¢. PaccMaTpuBaroOTCA ABa Oomeparopa — ONEPaToOp TPaH3HUTHBHOIO
3ambikanust T u omeparop Xacce H, KOTOPEHI onpeleieH CIAeOYIOMKM CIocoGom:
cupasesymBo Ho = {(u, v) € 0; He CyIIeCTBYET HANPABIECHHOrO HYTH (Wi, ..., W;)
B [M, o] takoro,9to k 2 3uw; = u, w, = v}. Joxa3bIBaloTCs ABE TEOPEMBI, KOTO-
pBIe CIIyXaT YaCTHYHBIM perneHueM npobiremsl K. Uysmxa.

Teopema 1. ITycmo [M, g] — bGeckoHeuHoe YACMUYHO YNOPAOOUEHHOE MHONCECMEO.
Cnpasedauso TH9 = @ mozoa u moabko mozoa, ecau 041 6CAKUX 08X 31€MeHmoe a, b
MHOMKcecmea M, oaa xomopwix (a,b) €9, cywecmsyem KOHEUHAA MAKCUMAALHAR
Yenb, KOMOpPAas A8AAEMCA NOOMHONCECmMBoM unmepsaia {a, b).

Teopema 2. ITycmbv ¢ — omHowenue Ha mHoxcecmee M. Pasencmeo THTo = To
umeem mecmo moz0a U moavko mozoa, xozoa zpad [M, o] ayuxsuueckuii u 0aa ezo
mpansumueHozo 3amvikanus [M, Tc] evinoaneno ycaosue uz meopemer 1.

B KxOHIle CTaThbH MPUMEHSIOTCS PE3YIbTATHL K MATEMAaTHYECKOH JINHIBUCTHKE.
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