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PERIODIC VIBRATIONS OF AN EXTENSIBLE BEAM 

MARIE KOPÁČKOVA AND OTTO VEJVODA, Praha 

(Received May 11, 1977) 

1. INTRODUCTION 

In the last years both free and forced vibrations of an extensible elastic beam have 
been studied by several authors ([1] — [6]). Under certain conditions forced vibrations 
of such a beam are described by the equation 

utt(t, x) + uxxxx(t, x) + ccut(t, x) - fiuxx(t, x) J u\(t, £) d£ = f(t, x) . 

We are interested in the existence of periodic solutions to this equation. In the pres
ence of damping (a > 0) this problem is examined in the paper of V. LOVICAR [9]. 
It may be shown (correspondingly to [8]) that there exists a sequence of free vibrations 
of undamped beam with hinged ends. However, in the case of / 4= 0 we are not able 
to solve this problem for a large. Thus limite ourselves to looking for a solution of 
the equation 

(1) ztt(t, x) + zxxxx(t, x) = g(t, x) + 

+ 8 \f(t, X) + Zxx(t, X) [\2(t, £) d£ + 8 F(Z) (t, X)l 

with homogeneous boundary conditions 

(2) z(t, 0) = z(t, n) = zxx(t, 0) = zxx(t, n) = 0 

and the condition of periodicity 

(3) z(t, x) = z(t + (o, x) . 

We make use of the results of the paper by N. KRYLOVA, O. VEJVODA [7]. 
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2. NOTATION AND AN AUXILIARY LEMMA 

Let Hm be the Hilbert space of real functions M(X) on [0,7c] which have generalized 
square integrable derivatives M(J)(X), j = 0, 1, . . . , m equipped with the norm 

|«|- = I f V W d* • 
1=° Jo 

Denote by °H2m the space of functions from H2m satisfying the conditions M(2-°(0) = 
= ui2j)(n) = 0, j = 0, 1, . . . , m - 1, with the norm JM|2m = |M(2m)|Ho. Denoting 

uk = (2jn)í/2 u(x) sin kx dx , 

let hm be the space of real sequences {uk; fc = 1, 2, ...})inthe sequel, we write u = 
00 

= {uk}) for which |M|2 = £ k2mu\ < +oo. The spaces °H2m and h2m are isometric 
*-=i 

and isomorphic. 
The solution of the equation (l) will be sought in the space °U = {M G C(R, °if 4) n 

n CA(jR, °H2) n C2(i?, H°); M(* + co) = M(r), r G R] with the norm 

|M|C* = max |M(r)|4 + max |Mt(f)|2 + max |Mfr(f)|0 = 
t t t 

= max ( f [/c4 « t(.)]2)1/2 + max [ £ (fc2 «i(t))2]1/2 + max [-£ («i'(0)2]1/2 • 
t * = 1 t k = l t k = l 

Then ze°U satisfies the equation (1) in the sence of H° for all t e R. The right hand 
sides of (1) will be elements of the space <g = {ue C(R, °H2); u(t + co) = M(*), t G R 

CO 

with the norm \u\9 = max |M(*)|2 = max ( J] fc4 M^(t))1/2}. 
t t fc~i 

For a while, let us investigate the limit problem given by (1), (2), (3) with 6 = 0 
QO 

and g e &. Looking for a solution z in the form z(t, x) = £ zk(t) sin fcx we find 
easily that zk(t) must satisfy the equation ka=1 

(4) 4'(O + fc4-*(O = 0*(O, 

for fc = 1, 2 , . . . . By a well-known theorem from the theory of ordinary differential 
equations this equation has an co-periodic solution if and only if g is orthogonal to 
the every co-periodic solution to the corresponding homogeneous equation. 

If fc satisfies the relation fc2co = 2nn (n integer) then the homogeneous equation 
(4) has two linearly independent co-periodic solutions cos fc2f, sin fc2f. Denote by S 
the set of such fc. For the other fc there exists no co-periodic solution. Hence, the 
orthogonality conditions read 

gk(t) cos fc2* dt = 0 , gk(t) sin k2t dt = 0 , fc € S . 
o Jo 
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Clearly, if v s Ino)"1 is rational the set S is infinite. On the other hand, if v is irra
tional the set S is empty, but we can not study this case in the sequel, because by the 
theorem 6.4 J. from [1] the nonlinearity in (l) includes derivatives of too high order. 
If these conditions are fulfilled the co-periodic solution of (4) is of the form 

(6) zk(t) = ak cos k2t + bk sin k2t + k~2 gk(x) sin k2(t - T) dt 

(fc = 1, 2,...), where ak9 bk9 YJk%al + Yftbl < oo are arbitrary for fc e S and 

ak = [2fc2 sin (fc2 ico)"]'1 gk(x) cos k2(\<o - T) dr , 

bk = - [2fc2 sin (fc2 £G>)] "* \gk(x) sin k2 ($co - x) dx 

for fc i S. 
Let g e <99 satisfy (5) for fc e S and let z°(t, x) be the solution to (l), (2), (3) for 

ao 

6 = 0 of the form z°(t9 x) = £ zk(t) sin fcx, where zk(t) is given by (6) with ak = bk = 
fc=i 

= 0 for fc e S. Then the problem (1), (2), (3) may be reduced to that of finding a func
tion u satisfying the equation 

(!') "tt + "xxxx = £ ^ ( " ) 

and the conditions (2), (3), where 

(7) F(u) (t, x) s (z° + „)„ (*, x) f V + «)? (<> «) ^ + 

+ /(*, X) + £ F(Z° + U) (t, X) , Z = U + Z° . 

Hence we have easily 
oo 

Lemma 1. Let F(u) : <% -» <$9 F(u) (t9 x) = £ ^*(") (0 sin fcx , « € ^ , u(f, X) = 
00 * « 1 

= J] uk(t) sin fcx. Tfcen u(t, x) is a solution of (1'), (2), (3) if and only if there exist 
* * i 

a, be ft4 such that 

(8) G(t4,a,b,s) = 0 , 

where 
G = (Gj, G2, G3) , 

(9) Gu(ti, a, b, e) (f) ss -w*(f) + ak cos fc2f + bk sin fc2r + 

+ efc""2 j Fk(u)(x)sin k2(t - x)dT, for fc = 1, 2 , . . . , 
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/•co 

(10) G2k(u, a, b, B) = -ak + e(2fc2 sin (fc2 ico))"1 Fk(u) (x) cos k2(\(o - t) dx , 

G3k(u, a, b, B) = bk + e(2fc2 sin (fc2 ico))""1 J Fk(u) (T) sin k2(|co - t) d t , 

for fceS, 

(11) G2k(u, a. b, B) S fc~ 2 \Fk(u) (T) cos (fc2r) dr , 

/*© 

G3k(u, a, fe, B) S fc"2 F*(tt) (t) sin (fc2r) d t , 

for fceS. 
Note, that 

00 00 

u(0, x) = (2/;r)1/2 X ak sin fcx, w,(0, x) = (2/TT)1/2 £ fc2fc* sin fcx . 

These equation will be solved by means of the following implicit function theorem 

Theorem 1. Let the following assumptions be fulfilled: 

(a) G(v, B) is a mapping from Banach space Bx x [—el9 e t ] into Banach space B2; 
(b) the equation G(v, 0) = 0 has a solution v0 e Bt; 
(c) the mapping G(v, B) is continuous in B and has G-derivative Gv(v, B) continuous 

in v,Bfor \v - i;0|Bl <; K, \B\ = BX; 

(d) [G^(i;0, 0 ] " 1 exists, is bounded and maps B2 on Bt. 
Then there exists B0 > 0 such that the equation G(v, e) = 0 has a unique solution 

V(B) e Bt for B e ~[e 0 , a0] which is continuous in e and such that v(0) = v0. 

3. MAIN RESULTS 

For the sake of simplicity of calculations we shall find solution to the problem (1), 
(2), (3) only for g of the form 

(12) g(t, x) = cos (vfc0t) {gt[l - (vfc^)] sin x + # 3 [3 4 - (vfc^)] sin 3x} , 

where fc0 is a positive integer such that vfc0 4= 3 if 1 e S, vfc0 =f= 5 if 1 or 3 6 S, vfc0 4= 4 
if 1 or 2 or 3 e S. In that case 

(13) z°(t, x) = cos (vfc0f) (gt sin x + g3 sin 3x) . 

We prove the following 

Theorem 2. Let g be of the form (12), fe <9, \f\9 + \g\9 > 0, co rational. Let 
F(u) :% ~+ 9 have a continuous G-derivative in <%. 
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Then there exists e0 > 0, u° e % such that the problem (l), (2), (3) has a unique 
solution z(e)e<% for ee[—e0, e0] which is continuous in e and such that z(0) = 
= z° + w°, U° is a solution of the equation G(u, a, b, 0) = 0, 

(14) u°(t, x) = X [a°k cos (k2t) + b°h sin (fc2f)] sin fcx . 
keS 

First, we shall prove two lemmas. 

Lemma 2. Let a = 0, ak = 0, ak = Ofor fc 4= 1, 3, £ fc8(p2 + q2) < + oo. Then 
*eS 

the system of algebraic equations 

(15) . ak{k2(a2 + b2) + 2(<r + <r*)] = pk , 

h{k2(a2 + b2) + 2(<r + <rt)] = 4* 

has a unique solution ak(a), bk(a), fc e 5, £ fc8[a^((r) + bj2^)] < + oo for a > 0, 
JfceS 

the function A(a) = J] fc2[a^(cr) + &*((T)] is strictly decreasing on (0, + oo), 
keS 

0 < .A(O) < + oo and lim ^(tr) = 0. 
<r-*oo 

Proof. The equations (15) imply 

Ok = 0 o pk = 0 , bk = 0 o qk = 0 . 

Hence we may suppose pk+ql> 0. Substituting afc = p*}^, bk = qkyk9 ke S 
into (15), these equations reduce to the equations 

yl + V* • W + **) ̂ "2(P2 + ft2)-1] - k - V + 4*)"1 = 0, keS 

for j>fc, which have a unique real root for every ke S, namely 

yk(a) - Bt{[(l + (4Bt(* + c^/a)3)1'2 + l ] 1 ' 3 -

- [(1 + (ABk(a + akWY'2 - l]1 '3} where Bt - [2*-(p* + , # ] - - / - . 

As yk(cr) ^ 3[2((T + ff*)]"1 the following estimate holds 

a\ + b\ S 9[2(cr + <rk)]~
2 (pi + q\) which implies 

ZkW + bD^Ca-^k^pt + ql). 
keS keS 

Since ^(cr) < 0 for a > 0, y*((r) is strictly decreasing on (0, + oo) for fc e S and so 
is A(a). As ^(0) = 2Bk for k # 1, 3 and 

M0) - *{[(1 + (4IW3)3)*'2 + 1]1/3 - [(1 + ( 4 ^ 3 ) T 2 ~ 1]1/3 < 
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for fc = 1, 3, we have 0 < ,4(0) < C[£ fc8(Pk + 4k)]1/3 < +oo. Finally, the ine-
keS 

quality A(o) g Ca~2 £fc2(Pk + ql) implies lim A(a) = 0 if a -• oo. 

Lemma 3. Lcf £fc8(rk + sk) < +oo, Dk = 2(<x + <rk) + fc2(ak + bk), ak, 6k, <r, ak 

be from Lemma 2. Then the system of linear equations for ck, dk, ke S 

(16) Dkck + [2 £ j2(a,c, + 6 ^ ) + fc2(akck + bkdk)] ak = rk 

-V* + {2Yj2(ajCj + bjdj) + k2(akck + M*)l bk = sk , fc e 5 
1eS 

has a unique solution ck, dk,keS and the following estimate holds 

(17) Z f c 8 ( c 2 + ^ ) = C E * 8 ( r 2 + S
2 ) . 

fce5 fceS 

Proof. If ak = bk = 0 then 

c2 + d\ = Ofc-
2(r2 + s2) 

Now, let ak + bk > 0. Multiplying the first equation of (16) by ak, the second by bk, 
multiplying the first equation of (16) by bk and second by ak we get an equivalent 
system to (16) 

(18) \Dk + 2fc2(a2 + b2)] (akck + bkdk) + 4(a2 + b2) a' = rkak + skbk, 

Dk(bkck - akdk) = rkbk - skak , fc 6 5 

where ex' = Y;j\ajcj + Mi)-
1eS 

Multiplying the first equation by fc2[Dk + 2fc2(ak + b2)]-1 and summing it for 
IceSwe have 

"' = I fe2(^«* + sA) [->* + 2fe2(a2 + fr2)]-1 . 
fceS 

• {1 + 4 1 k2(a2 + b2) [Dk + 2k2(a2 + b2)]"1}"1 

&eS 

which implies the following estimate (using the Holder inequality) 

(19) \af^c^k2(r2 + s2). 

Further, from (18) we get 

(4 + b2) (c2 + d\) - (rkbk - skakf D,"2 + 

+ [ V , + s A " <a2 + b2) a']2 [Dt + 2k2(a2 + fe2)]"2 , 

from which follows 

k\c2 + dl) <[ [r2 + s2 + 16(a2 + i>2) (a')2] D~k
2 . 

This estimate together with (19) imply (17). 
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Proof of Theorem 2. It suffices to show that the operator G defined by (9), (10), 
(11) satisfies the assumptions of Theorem 1 with Bt = B2 = °U x h4 x ft4. The 
assumptions^) and (c) are fulfilled in virtue of Lemma 1 and of the assumptions of 
Theorem 2. To verify the assumption (b) requires to show that the system 

(20) ~uk + ak cos fc2* + bk sin fc2f = 0 , fc = 1, 2 , . . . , 

** = 0, 

bk = 0 , fc e S. 

(21) fc"2 \Fk(u9 0) (T,) cos fc2t dr = 0, 
Jo 

k~2\ Fk(u9 0) (T,) sin fc2t dr = 0 , fceS 

has a unique solution (w°, a0, b°) e % x h* x h4, which means, in fact, that the 
equations (21) have a solutions a£, bk9 k e S, £ ^[O**)2 + (*>*)2] < + °°- Inserting 

(7), (20) into (21) we get after some calculation the equations 

(22) ak{g\ + 9g\ + £I2(a2 + b2) + fc2(a2 + fc2) + <rft] = fk, 

*>*I>i + 9g\ + I j 2 (a 2 + b2) + fc2(a2 + fe2) + <rj = /£, fc € S, 

where 

f(t9 x) cos fc2* sin fcx dx dr, 
o 

nn 

f(t9 x) sin fc2r sin fcx dx dr, 
o 

&t — ^2 f̂e f° r fc = 1, 3 , <rk = 0 for fc 4= 1, 3 . 

In the case of more general function g(t9 x) the equation (22) will be more complicated. 
By Lemma 2 (putting pk =/fc

c, gk = / / , <r = #2 + 9«£ + £;2(a,2 + *>/)) this 
system has a solution if and only if the equation SmS 

<r~g2i+9g\ + A(CT) 

has a real solution <r0 > 0. However this is an immidiate consequence of Lemma 2. 
Thus ak = tf*(o"o)> bk = bk(a0)> keS from Lemma 2 are the solutions to (22). By 
Lemma 2 £fc8. [(a£)2 + (fc£)2] is finite for / e <S and hence a0, ft0 = {a?, fe£, for 
fc 6 S a\ = 6? - 0, for fc £ S} and w° are the solutions of (20), (21), a0, fc° e fc4 

and ti° is of the form (14). 
To prove (d) let us show that the system 

GU>)("°> «*> b°> °) (*> *> *) - (/>A 5) 
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l.Є. 

- ӣk(t) -f äk cos к2t + Бk sin к2t = Л , ãk = pk , Бk = qк9 кe S , 

f. {«*(0 Zj2(-K0 + «?(0)2 + -K(0 + «*°(0) • 
jeS 

. £ Д 2 °( í ) + «?(0) 5/0} cos fe2í dí = - p t , fc є s 
jeS Ҡ 

Í; {«ЛОЕД-ЯО + «ко)2 + -KW + ««o) + 
j б s 

+ E .W(0 + «y (0) "XOl sin fc2r dt = - q t , fceS 
Jes 7T 

has a unique solution for every (/, p9q)e<% x h* x h* satisfying 

(23) |«|4 + |4< + |5|„< = c(|/|4 + \p\„< + |s|*<). 

Obviously, it is sufficient to prove this assertion only for the last two equations and 
ak9 Bk9 ke S. Integrating we obtain equations (16) with 

h = 2pk, sk = 2qk , ck = ak9 dk = Bk9 ak = k2gl for k = 1, 3 , ak = 0 

for k # 1, 3, 
From Lemma 3 it follows the existence and uniqueness of such ak9 Bk and the estimate 

(23), which completes the proof. 
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