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Časopis pro pěstovánf matematiky, roč. 110 (1985), Praha 

ON EXTENSIONS OF CYCLIC ORDERS 

IVAN CHAJDA, Přerov, VÍTĚZSLAV NOVÁK, Brno 

(Received February 15, 1982) 

It' is known that not any cyclic order has a linear extension ([3]). In this note we 
derive some simple sufficient conditions for existence of such an extension. 

1. TERNARY RELATIONS 

1.1. Definition. Let G be a set. A ternary relation T on the set G is any subset 
of the 3 r d cartesian power G3:T^ G3. 

1.2. Definition. Let G be a set, T a ternary relation on G. This relation is called: 

(1) symmetric, iff (x, y, z) e T=> (z, y, x) e T; 
(2) strongly symmetric, iff (x, y, z)e T=> (u, v, w) e Tfor any permutation (u, v, w) 

of the sequence (x, y, z); 
(3) asymmetric, iff (x, y, z)e T=> (z, y, x) e T; 
(4) strongly asymmetric, iff (x, y, z) e T=> (u, V,W)ET for any odd permutation 

(u, v, w) of the sequence (x, y, z); 
(5) reflexive, iff x, y, z e G, card {x, y, z) ^ 2 => (x, y, z) e T; 
(6) transitive, iff (x, y, z) e T, (x, z,u)eT=> (x, y, u) e T; 
(7) cyclic, iff (x, y, z) e T=> (y, z, x) e T; 
(8) complete, iff x, y, z e G, x =# y 4= z + x => there exists a permutation (u, v, w) 

of the sequence (x, y, z) such that (u, v, w) e T. 

1.3. Lemma. Let G be a set, T a ternary relation on the set G. Then 

(1) T is strongly symmetric if and only if T is symmetric and cyclic. 
(2) Let Tbe cyclic. Then Tis strongly asymmetric, if and only if it is asymmetric. 

Proof, (l) is trivial. 
(2): Let T b e cyclic. If T i s strongly asymmetric, then it is obviously asymmetric. 

If Tis asymmetric and (x, y, z) e T, then (y, z, x) e T, (z, x, y) e T, thus (z, y, x) e 
G T, (x, z, y) 6 T, (y, x, z) e T. Hence Tis strongly asymmetric. 
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1.4. Definition. Let G be a set, Ta ternary relation on the set G. The ternary rela­
tion T* on G defined by 

(x, y, z)eT* o (z, y, x) e T 

is called the dual relation to T. 

1.5. Lemma. Let T be a ternary relation on a set G. Let (p) be any one of the 
properties (1) —(5), (7), (8) from 1.2. If T has the property (p), then T* has the pro­
perty (p) as well. 

Proof is trivial in all cases. We show, for instance, that strong asymmetry of T 
implies strong asymmetry of T*. Thus, let T be strongly asymmetric, (x, y, z) e T* 
and let (u, v, w) be an odd permutation of the sequence (x, y, z). Then (z, y, x)eT 
and (w, v, u) is an odd permutation of (z, y, x). Thus (w, v, u) e Tand (u, v, w) e T*. 

1.6. Definition. Let Tbe a ternary relation on a set G and let (p) be any one of the 
properties (1) —(8) from 1.2. A ternary relation Q on G is called a (p) — hull of the 
relation T, if and only if 

(1) Q^T, 
(2) Q has the property (p), 

(3) if R is any ternary relation on G having the property (p) and such that R ^ T, 
then R 2 Q. 

1.7. Lemma. Let G be a set, I #= 0 a sef, and /ef T, be a ternary relation on G for 
any i e I. Lel (p) be any one of the properties (1) — (7) from 1.2. IfT- has the property 
(p)for any i G I then T = f) Tt has the property (p). 

iel 

Proof is trivial. 

1.8. Corollary. Let T be a ternary relation on a set G and let (p) be any one of 
the properties (1), (2), (5) —(7) from 1.2. Then there exists a (p) — hull of the rela­
tion Ton G. 

Proof follows from 1.7 and from the fact that the full relation G3 has the proper-
t ies(l) , (2) ,(5)-(7) . 

1.9. Lemma. Let T be a ternary relation on a set G and let Ts be the symmetric 
hull ofT. Then r = T u T*. 

Proof. Trivial. 
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1.10. Lemma. Let Tbe a ternary relation on a set G and let Tc be the cyclic hull 
of T. Then Tc = {(x, y, z) e G3; there exists an even permutation (u, v, w) of the 
sequence (x, y, z) such that (u, v, w)e T}. 

Proof. Trivial. 

1.11. Lemma. Let T be a ternary relation on a set G and let Ta be the strongly 
symmetric hull of T Then Ta = (Ts)c. 

Proof. Obviously (Ts)c 3 T, and (Ts)c is strongly symmetric. If R is a strongly 
symmetric ternary relation on G and R 3 T, it can be easily seen that (Ts)c ^ R. 

1.12. Notation. Let G be a set. We put IG = {(x, y, z)e G3; card {x, y, z} = 2}. 

1.13. Lemma. Let T be a ternary relation on a set G and let Tr be the reflexive 
hull of T Then T = T u I G . 

Proof. Trivial. 

1.14. Notation. Let Tbe a ternary relation on a set G. Put T1 = ((x, y, z) e G3; 
there exists ue G such that (x, y, u) e T, (x, u, z) e T}, V = Tu T1. Further we 
define by induction T (0) = T. T(n + 1) = (T(n))' for any natural number n. 

1.15. Theorem. Let Tbe a ternary relation on a set G and let V be the transitive 
00 

hull of T. Then V = [j T(n). 
/! = 0 

00 

Proof. Denote U T{n) = Q- Obviously Q ^ T. We show that Q is transitive. Let 
n = 0 

(x, y, z) G Q, (x, z, u) e Q. Then there exist natural numbers m, n such that (x, y, z) e 
e T(m), (x, z, u)eT(n). Put k = max {m, n}; then T(m) c T(k), T(n) c T(k) and thus 
(x, y, z) G T(k), (x, z, u) e T(k). This implies (x, y, u) e (T(k))f = T(k + l) and hence 
(x, y, u) G Q. Thus Q is transitive. Let R be any transitive ternary relation on G such 
that R 2 T We prove by induction that T(n) c R for any natural n. For n = 0 this 
condition holds by the assumption. Suppose T(m) ^ R and (x, y, z)e T ( m + 1 ) = 

= (y(«)y# jhen either ( j c , y , z ) e r w or there exists ueG with (x, >', u) e T(m), 
(x, u, z) G T(m). This implies (x, y, u) e R, (x, u, z)e R and as R is transitive, we have 
(x, y, z) G R. Hence Q ^ R. 

1.16. Lemma. Le* Tbe a ternary relation on a set G. IfTis strongly asymmetric, 
then Tc is asymmetric. 

Proof. Let (x, y, z)eTc, (z, y,x)e Tc. Then there exists an even permutation 
(u, v, w) of (x, y, z) such that (u, v,w)e T and an even permutation (r, s, t) of 
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(Z, y, x) such that (r, s, t) e T. As (Z, y, x) is an odd permutation of (x, y, Z), (r, s, t) 
is an odd permutation of (u, v, w). But this contradicts the strong asymmetry of T. 

2. CYCLICALLY ORDERED SETS 

2.1. Definition.Let G be a set, C a ternary relation on the set G which is asymmetric, 
transitive and cyclic. Then C is called a cyclic order on G and the pair (G, C) is called 
a cyclically ordered set. If, moreover, card G ^ 3 and C is complete, then C is called 
a complete (linear) cyclic order on G and (G, C) is called completely (linearly) 
cyclically ordered set or a cyc/e. 

In what follows, we summarize some concepts and assertions concerning cyclically 
ordered sets which can be found in [5], 

2.2. Let G be a set, T a cyclic ternary relation on G. T is transitive if and only if 

one of the following equivalent conditions holds: 

(1) (x, y, z) e T, (x, u,y)eT=> (u, y, z) e T; 
(2) (x, y, z) e T, (y, u, z) e T=> (x, y, u) e T; 
(3) (x, y, z) e T, (y, u, z) e T=> (x, u, z) e T 

2.3. Let (G, G) be a cyclically ordered set, let x0 e G. For any x, y e G put 
x <c,xo y W either (x0, x, y)e C or x0 = x i= y. Then <c,xo *s an or^er on G w^tn 

the least element x0. 

2.4. Let G be a set, let < be an order on G. Define the ternary relation C< on G 
by (x, y, z) e C< o either x < y < z, or y < z < x, or z < x < y. Then C< is 
a cyclic order on G. 

2.5. Let G be a set, let <l9 <2 be orders on G. If < x £ < 2 , then C<t c C<2. 

2.6. Let G be a set with card G -% 3, let < be a linear order on G. Then C< is 
a linear cyclic order on G. 

Let (G, C) be a cyclically ordered set, let x0 e G. (G, C) is called x0 -stable iff the 
following condition is fulfilled: x, y e G — {x0}, (Z, x, y) e C for some z e G => 
=> (x0, x,y)eC or (x0, y, x) e C. 

2.7. Let (G, C) be a cyclically ordered set, let x0 e G. Then the following state­

ments are equivalent: 

(A) C = C<CtXo, 

(B) (G, C) is xu - stable. 

Let (G, C) be a cyclically ordered set, let A c G, A #= 0. The subset A is called 
connected, iff the following condition is fulfilled: x, y e A, x =)= y => there exist 
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a natural number n and elements xh yh z{ e A (1 g i <̂  n) such that (xh yh Zf) e C 
for all i = l , . . . , n , xe{xl9y1,zl}9 ye{xn,yn,zn), and {xf, yh ZJ n {x i + 1 , yf + 1, 
z.+ i} * 0 for i = l , . . . , n - 1. 

2.8. Let (G, C) be a cyclically ordered set, let xeG. Then there exists a maximal 
connected subset of G containing x. 

A maximal connected subset of a cyclically ordered set (G, C) is called a com­
ponent of (G, C). 

Let I be a set and let (Gh Ct) be a cyclically ordered set for any i e I. Let the 
sets Gt (i e I) be pairwise disjoint. Put G = U Gh C = (J Ch Then (G, C) is called 

iel iel 

the direcf sum of cyclically ordered sets (Gh C{) (i e I); we write (G, C) = £ (G.-, C,). 
1 6 / 

It is clear that ]T (G,-, Cj) is a cyclically ordered set. Further, if (G, C) is a cyclically 
16/ 

ordered set, {Gh i el] the set of all its components and C{ = C n G? for all i eI, 
then (G,C) = £ (G,-, Cf). This expression is called the canonical representation 

iel 

of (G,C). 

3. LINEAR EXTENSION OF A CYCLIC ORDER 

3.1. Definition. Let G be a set, let Cl9 C2 be cyclic orders on G. C2 is called an 
extension of Cx iff Cx .= C2. An extension C2 of a cyclic order Cl on a set G is called 
a linear extension iff C2 is a linear cyclic order on G. 

3.2. Remark. In contrast to the well-known Szpilrajn's theorem on orders ([6]), 
not every cyclic order has a linear extension. The following example can be found 
in [3]. 

3.3. Example. Put G = {x0, y0, z0, x, y, z, u, v, w, q, r,s,t], T= {(x0, z0, x), 
(yo> x, y), (z0, y, z), (x, z, u), (y, u, v), (z, v, x0), (u, x0, Z0), (v, z0, y0), (x0, y0, w), 
(zo> w, q)9 (y09 q, r), (w, r, s), (q, s, t)9 (r, t, x0), (s, x0, y0), (t, y0, z0), (v, Z0, t), 
(yo> v> 0}- As ^ s strongly asymmetric, the cyclic hull Tc of Pis asymmetric by 1.16. 
Further, Tc is cyclic and by a direct verification we find that it is transitive. Thus Tc 

is a cyclic order on G. Let C be any extension of Tc on G and suppose (x0, y0i z0) e C. 
Then (x0, Z0, x) e T ^ C implies (y0, Z0, x) e C by 2.2 (l). Analogously (y0, x, y) e 
eT c C implies (Z0, x, y) e C and we get successively (x, y, z) e C, (y, z, u) e C, 
(Z, u, v) e C, (u, v9 x0) e C, (v, x0, Z0) e C, (x0, Z0, y0) e C. This contradicts the 
assumption (x0, y0, z0) e C. If we suppose (x0, Z0, y0) e C then we similarly obtain 
(zo> yo> w) e C, (y09 w, q) e C, (w, q, r) e C, (q9 r, s) e C, (r, s, t) e C, (s, t9 x0) e C, 
('» x0, y0) e C, (x0, y0, z0) e C, a contradiction. Thus, Tc has no linear extension. 
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3.4. Theorem. Let (G, C) be a cyclically ordered set with card G ^ 3. If (G, C) 
is x0 — stable for some x0 e G, then there exists a linear extension of the cyclic 
order C on G. 

Proof. Let (G, C) be x0-stable. By 2.3, <CfXo is an order on G. By Szpilrajn's 
theorem ([6]) there exists a linear extension of the order < C j X o on G, i.e. there 
exists a linear order < on G such that < c , x o _ < . By 2.6, C< is a linear cyclic order 
on G and by 2.5, C<CtXQ ~ C<. But C<CfXo = C by 2.9, thus C ^ CK and C< is 
a linear extension of C. 

3.5. Theorem. Let (G, C) be a cyclically ordered set with card G ^ 3, let (G, C) = 
= YJ (Gi> Ct) be its canonical representation. If, for any i eI, there exists x t e Gt 

iel 

such that (G t, Ct) is xrstable, then C has a linear extension on G. 

Proof. <CifX. is an order on Gt for any i e I by 2.3. As the sets Gt are pairwise 
disjoint, < c = (J <Ci>Xi is an order on G (in fact, < c is the cardinal sum of orders 

iel 

<Ct,Xi)' According to Szpilrajn's theorem ([6]) there exists a linear extension < o, 
the order < c on G. Thus, we have <CijXi _ < c _ < for any ieI and by 2.5t 
C<c.x. c C< c c C<. As (G t, Ct) is xrstable, 2.9 implies C<CuXi

 = Ci s o t h a ^ 
Cf _ C< for any ieI. Hence [j Ct = C _ C<. But C< is a linear cyclic order 

on G by 2.6 and, therefore, C< is a linear extension of C. 

3.6. Remark. The following problem remains open: Find necessary and sufficient 
conditions for a cyclic order to have a linear extension. 
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