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SOME INEQUALITIES CONCERNING II-ISOMORPHISMS

BoHDAN ZELINKA, Liberec

(Received October 20, 1964)
In this article two problems of S. M. Ulam are solved.

In his book [1] (page 18 of the Russian translation) S. M. ULaM defines the II-
isomorphism in a given Cartesian power E™, where m = 2, as a mapping by which to
an element of E™ with coordinates [xy, X,, ..., x,,] an element with coordinates
[£(xy), f(x2), .-, f(x,)] is assigned, where f is a one-to-one mapping of E onto E.
Using this concept, the I[T-automorphism is defined in the usual manner. Now in [1]
one asks the questions to find suitable inequalities for the cardinality of the class of
subsets of E™ which are IT-isomorphic to a given subset and of the set of IT-auto-
morphisms of a given set, supposing that the cardinality e of the set E is finite. At
first we shall solve the second problem.

Let a set A = E™ be given and A be the set of coordinates of elements of A4, i.e.
such a subset of E, that each element of 4 is a coordinate at least of one element of
A and A contains all such elements. Let d be the cardinality of the set 4; it is evidently
a finite number. Let us denote J(A) the set of IT-automorphisms of the set 4 (we
do not consider their values outside A). Then the following theorem is true.

Theorem 1. Given @, for the cardinality of the set J(A) we have the following
inequality:
1 < card J(4) £ &

This inequality cannot be improved.

Proof. The proof of the inequality itself is simple. In the set 4 there exists always
an identical IT-automorphism, so that card J(4) = 1. Each IT-automorphism of the
set A is induced by some one-to-one mapping (permutation) of 4 onto 4; such
mappings and IT-automorphisms induced by them are assigned one to another in
one-to-one manner, so that card J(4) < !, because 4! is the number of permutations
of the set 4. Next, we shall prove that the cases card J(4) = 1 and card J(4) = a!
can occur. At first we take the first case with @ = 2 (for @ = 1 the proof is trivial).
Let p,, Py, ..., P; be the elements of the set 4. Let 4 be the set of elements p; for
i =1,...,d — 1 such that the first coordinate of the element p; is p; and all other

474



coordinates of the element p; are equal to p,+. The set constructed in such a manner
has only the identical IT-automorphism. Each of the elements 5, and p; is a coordi-
nate of only one element of 4 and each other element is a coordinate of exactly two
elements of A. Let ¢ be an arbitrary IT-automorphism of the set A induced by
a permutation ¢ of the set 4. As j, is a coordinate of exactly one element of 4 and
is its first coordinate, Zo’(p’l) must be also a coordinate of exactly one element of A4,
and must be its first coordinate. But such an element is only f; and consequently,
o(Py) = Py. But then ¢(p;) = p, and therefore @(p,) = p,. From this it follows
that ¢(p,) = p,, as p, is the only element of 4 with the first coordinate j,; from this
again it follows that @(j3) = p,. In this manner we shall prove after a finite number
of steps that ¢ is an identical IT-automorphism. As we have chosen ¢ arbitrarily,
we have proved that in 4 only an identical IT-automorphism exists. In the second case
let again f,, ps, ..., p; be the elements of the set 4 and let now p;, fori =1,...,d
be the elements of the set A such that all coordinates of the element p; are equal
to p,. Easily we can verify that each permutation of the set 4 induces a IT-auto-
morphism of the set A and therefore card J(4) = a!

Using Theorem 1 we shall prove a new theorem concerning the first problem. For
simplifying the considerations we shall consider the IT-isomorphism as a mapping
of the set 4 into E, so the matter will be with the contracting of the IT-isomorphism
onto the set A.

Theorem 2. For the cardinality of the set A of the sets Il-isomorphic with the
set A the following inequality is true:

(‘i) < card A < & <")
a a

This inequality cannot be improved.

Proof. Every one-to-one mapping of A into E induces some IT-isomorphism of
the set 4 onto some subset of E™. The number of those mappings is the same as the

.. iy~ Y
number of variations with @ elements of e elements, i.e. 4! ( ); also, each of those
a

IT-isomorphisms is induced by some of those mappings. Now, if the II-isomor-
phism ¢ maps the set 4 onto some set B = E™ and { is some [T-automorphism of
the set A, then the composed IT-isomorphism ¢y also maps the set 4 onto B and
each IT-isomorphism of A onto B can evidently be expressed so. Therefore, if B is
IT-isomorphic with A, then the number of IT-isomorphisms mapping A4 onto Bis equal
to card J(A). The cardinality of the class A is therefore equal to [i!(i)/card J(4
a
Using the inequality of Theorem 1, we get the inequality

(‘i) < card A < a (e> :
a a
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As the inequality of Theorem 1 cannot be improved, also this inequality cannot be
improved.

Corollary. For the cardinality of the set A the following inequality is true:

1<card AL e!

This inequality cannot be improved in general case. (Both the bounds are attained
for @ =e.)
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Vytah
NEKTERE NEROVNOSTI TYKAIJICI SE II-ISOMORFISMU

BOHDAN ZELINKA, Liberec

V ¢&ldnku jsou dokdzdny nerovnosti pro mohutnost tfidy podmnozZin E™ II-
isomorfnich dané podmnoZin€ a pro mohutnost mnoZiny II-automorfismui dané

mnoZiny za pfedpokladu, Ze mohutnost mnoZiny E je konend. Je to feSeni problé-
mi z [1].

Pesrome

HEKOTOPBIE HEPABEHCTBA KACAIOIIMUECHA
II-U3I0OMOP®M3MOB

BOTJAH 3EJIMHKA (Bohdan Zelinka), JInGepen

B craThe JoKa3aHbl HEPABEHCTBA JIs MOLHOCTH KJiacca oqMHoxecTB E™ I1-u30-
MOpPGHBIX JaHHOMY TMOAMHOXECTBY M IJIsi MOLIHOCTH MHOXecTBa IT-aBToMOpdu3-
MOB [JAHHOTO MHOXECTBA C IIPEANOJIOKEHHEM, YTO MOLIHOCTh MHOXeCTB2 E KOHeu-
Ha. DTo pemenne 3amay u3 [1].
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