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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

GROUPS AND POLAR GRAPHS 

BOHDAN ZELINKA, Liberec 

(Received December 19, 1973) 

In this paper the results of [2] will be transferred to polar graphs. A polar graph 
was defined by F. ZiTEK [1] at the Czechoslovak Conference on Graph Theory 
at Stifin in May 1972. Their properties are studied in the papers [3] —[9]. 

A polar graph is an ordered quintuple <V, E, P, x9 A>, where V, F, P are sets, 
x and A are mappings of the set Vand E respectively into the set of unordered pairs 
of distinct elements of P and the following conditions are satisfied: 

(1) For each u e V, v e V, u 4= v, we have x(u) n x(v) = 0. 

(2) For each e e E, fe E, e 4= /, we have k(e) 4= k(f). 

(3) For each peP there exists ve Vso that pex(v). 

The elements of the sets V, F, P are called respectively vertices, edges and poles. If 
p e P, v e V9 pe x(v)9 we say that the pole p belongs to the vertex v. If p e P, e e E 
and p 6 k(e)9 we say that the edge e is incident with the pole p. If an edge e is 
incident with a pole p which belongs to a vertex v, we say that e is incident with v. 

Let © be a group, A its subset. The polar graph PG((5, A) is defined as follows: 
Its vertex set Vis the support of ©, its pole set P is the disjoint union of two sets P t , P 2 

such that there exist bijections pt : (6 -• Pt and p2 : (5 -> P 2 . The edge set E of 
PG(&9 A) consists of the edges joining Pi(x) with P2(y) for such x and y of (6 that 
x"xy e A. (An edge e joins two poles pl9 p2 of a polar graph, if it is incident with 
both of them.) 

This is an analogue of a directed graph studied in [2]. In that graph there was 
a directed edge from x into y if and only if x~~ xy e A. 

A polar graph is called vertex-transitive, if and only if to any two vertices w, v of 
this graph there exists an automorphism q> of this graph such that <p(u) = v. 

An isomorphism of a polar graph Gt =<V1,£1,P1,x1,A1> onto a polar graph 
G2 a* <V2, El9 P2, xl9 k2} is a one-to-one mapping q> : V% u Ex u Px -• V2 u F2 u 
u P2 such that ^(Vt) = V29 (p(E^) = £2, (p(Pt) = P2, x2 (p(v) = (p xx(v) for each 
v e Vl9 A2 <p(e) = <p kt(e) for each e e Ev An isomorphism of a polar graph G onto 
itself is called an automorphism of G. 



(For the vertex-transitive graph — in the non-polar case — in [2] we have used 
the term "symmetric". Here we prefer the term "vertex-transitive", because the term 
"symmetric graph" is used by other authors in different senses.) 

Now we shall define a homogeneous polar graph in accordance with the similar 
concept for non-polar graphs. A polar graph G is called homogeneous if and only if 
the following conditions are satisfied: 

(a) To any two poles pu p2 of G there exists an automorphism q> of G such that 

<P(Pl) = P2-

(P) For any pole p of G and any permutation 71 of the set of edges incident with p 
there exists an automorphism ij/n of G such that tyjjp) = p and the permutation n 
is induced by ^/n. 

It is easy to see that every homogeneous polar graph is also vertex-transitive. 
Now we shall prove some theorems analogous to those of [2]. 

Theorem 1. For every group © and any one of its subsets A the polar graph PG(ffi, A) 
is vertex-transitive. 

Proof. If w, v are two vertices of PG(©, A), we take a mapping <pvu-i such that 
cpvu-i(a) = vu~xa for any a e ©; this is a one-to-one mapping, because © is a group. 
For the poles pt(a), p2(a) of the vertex a we put (pvu-i(Pi(a)) = pt(vu~xa), 
(pvu-i(p2(a)) = p2(vu~xa). Now the mapping cpvu-i can be naturally extended also 
to the edges of PG(®, A). If x, y are two vertices of PG(©, A), then px(x) and 
p2(y) are joined by an edge if and only if x~xy e A. The images of the poles P^x), 
p2(y) in q>vu-i are p1(vu~~ix), p2(vu~ly). We have 

(vw^x)" 1 (vu~xx>) = x~~xuv~xvu~xy = x~xy . 

Thus the poles (pvu-i(pi(x))> <Pvu-^(y)) are joined by an edge if and only if ^ ( x ) , 
p2(y) are joined by an edge. The pairs pt(x), pt(y) or p2(x), p2(y) are never joined 
by an edge. Therefore <puv-i is an automorphism of PG(®, A). Further we have 
<Puv-i(u) = v. Therefore PG(®, A) is vertex-transitive. 

Theorem 2. Let © be a group, A its subset. Let cp be an automorphism of the 
group © such that either cp(A) = A or <p(A) = A, where A = {y e © | y = x" 1 , 
x e A}. Then cp is induced on the vertex set of PG(©, A) by an automorphism 
ofPG(®,A). 

Proof. Let (p(A) = A. Let x, y be two vertices of PG(®, A). The poles px(x), p2(y) 
are joined by an edge if and only if x~ xy e A. Let cp* be a mapping such that cp*(v) = 
= -?(t0 for each ve Vs (p*(pt(v)) = p^v)), (p*(p2(v)) = p2(<p(v)\ We have 
[<K*)] * <p(y) = <p(x ly\ because cp is an automorphism of ©. Thus the poles 
PI(<P(*)) = <P*(Pi(*)), P2(cp(y)) = <p*(p2(y)) are joined by an edge if and only if 
g>(x xy) e A. However, a s q>(A) = A and <p is one-to-one, this is so if and only if 



x~ly e A, i.e.,Af Pi(x) and p2(y) are joined by an edge in PG(©, A). Therefore cp* 
is an automorphism of PG(©, A). Let <p(A) = A. We have again [<?(*)]-1 <p(y) = 
= cp(x~ iy). Let cp** be a mapping such that (p*(v) = cp(v) for each v G V, <p**(pi(^)) = 
= Pi(<p(v)), <P**(p2(v)) = PM»))-

 T h e P ° l e s <P**(Pi(*)) = Pi{<t>{x)\ <P**(Pi(y)) = 
= PiOKy)) are Joined by an edge if and only if [<p(y)]_1 <p(x)e A. But [<p(y)]_1. 
. cp(x) = <p(y~ *x); this is in A if and only if x~ ly e A. Thus <p** is an automorphism 
of PG(©, A). Both cp* and <p** induce <p on the vertex set of PG(©, A). (We have 
tacitly assumed that these mappings are naturally extended also onto the edge set.) 

Theorem 3. Let © be a group, A a system of its generators, A = [y G © | y = x~*, 
x G A}. Let any permutation of A be induced by an automorphism of © and let 
there exist an automorphism a Of© such that a(A) = A. Then PG(©, A) is a homo-
geneous polar graph. 

Proof. According to Theorem 1, to any two vertices x, y of PG(©, A) there 
exists an automorphism cp of this graph such that <p(x) = y. In the proof of Theorem 1 
we have constructed an automorphism such that <p(pi(x)) = Pi(y), <p(p2(x)) = p2(y)-
Now let e be the unit element of ©. The pole Pi(e) is joined with the poles p2(a), 
where a € A, and with no other poles, the pole p2(e) is joined with the poles p t(b), 
where b e A, and with no other poles. According to Theorem 2 the automorphism a 
of © is induced by the automorphism a** of PG(©, A) which is defined so that 
a**(x) = a(x), a**(pi(x)) = p2(a(x)), a**(p2(x)) = pt(a(x)) for each x e ©. We see 
that a**(pi(<?)) = p2(e), ct**(p2(e)) = p{(e). Now if we have two poles Pi(x), p2(y), 
the former is mapped onto the latter by the automorphism (p*^cc**(p*-i, where 

^*(P*(W ) ) ^ Pi{yu\ <P*-«(Pi(w)) = Pi(x~lu) f° r e a c " w e © and / equal to I or 2. 
Thus the condition (a) is proved. To any permutation n of the set of edges incident 
with P\(e) there corresponds in a one-to-one manner a permutation ri of A; for any 
a GA the element n(a) is the end vertex of the edge n(h) which is in A, where h 
joins pt(e) and p2(a). Each n is induced by an automorphism i/yn of © (according 
to the assumption) and this automorphism is induced by an automorphism ij/* 
of PG(©, A) (according to Theorem 2). Thus (p) holds for px(e). Now let x e ©, 
let Pi(x) be a pole of x, where / = t or / = 2. Let /? be an automorphism of PG(©, A) 
which maps pt(x) onto pt(e); its existence was proved above. Let O be a permutation 
of the set of edges incident with p,(x). The mapping figp~l is a permutation of the 
set of edges incident with pt(e). To this permutation there exists an automorphism y 
of PG(©, A) inducing it. Then fi~xyf$ is the required automorphism for O. 

Theorem 4. Let © be an Abelian group, A a system of its generators. Let any 
permutation of A be induced by an automorphism of ©. Then PG(©, A) is a homo­
geneous polar graph. 

Proof. As © is Abelian, there exists an automorphism a of © such that a(x) = 
= x" 1 for any x e ©. This automorphism maps A onto A. Therefore according to 
Theorem 3 the graph PG(®, A) is a homogeneous polar graph. 
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HPG (1,2) 

Fig. 1. 

Analogously as in [2] we shall construct a certain class of homogeneous polar 
graphs. Let 9I l s ..., 9Ifc be cyclic groups of the same order T, let at be the generator 
of 91. for i = 1,..., k. Let (5 be the direct product of 9l l 5..., 2lfc, let A = {al9..., ak}. 
The graph PG((5, A) is evidently homogeneous and we denote it by HPG(k, r). 
We have obviously r _• 2. Some of these graphs are in Fig. 1. They can be generalized 



also to the case when k is an infinite cardinal number or r = K0. The graph 
HPG(2, K0) is in Fig. 2. A vertex is drawn as a magnetic needle; the poles of this 
needle are the poles of the vertex. 

Fig. 2. 
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