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Classification of tensor products of symmetric graphs

Wilfried Imrich, Aleš Pultr

Abstract. In the category of symmetric graphs there are exactly five closed tensor products.
If we omit the requirement of units, we obtain twelve more.
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The aim of this article is an inventarization of (closed) tensor products in the
category Gph of symmetric graphs. More precisely, we consider regular closed
tensor products, i.e. those in which the vertex set is the Cartesian product of the
vertex sets of the factors. It is known (see [8]) that there are exactly four such
that the corresponding exponentiation H(B,C) is carried by the set of all graph
homomorphisms; on the other hand, it is also well-known that Gph is a Cartesian
closed category with exponentiation carried otherwise. Here we will show that there
exactly five regular tensor products in Gph. If one does not require a unit, one has
seventeen.
Constructions will be quite explicit and one only needs a basic preliminary know-

ledge of category theory, as presented e.g. in the introductory chapters of [4].
This paper is related to [2]. Unlike that, we do not (and cannot) consider product

variants with a non-trivial role of non-edges, and, of course, we put much stronger
constraints on the products.

1. (Closed) tensor products.

1.1. A tensor structure in a category K is constituted by functors ⊗ : K × K →
K, H : Kop ×K → K and an object E of K satisfying

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C),(1)

A⊗B ∼= B ⊗A,(2)

E ⊗A ∼= A, and(3)

K(A⊗B,C) ∼= K(A,H(B,C)).(4)

1.2. Remarks: 1. In a general category, one has to require certain coherence
conditions concerning the indicated natural equivalences (cf. [1], [3], [5]). In the
category we are dealing with (and in similar ones) they are, however, satisfied
automatically (see [6]).
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2. Sometimes one considers non-commutative tensor products. Then one has
to consider a couple of distinct hom-products, one adjoint to − ⊗B and the other
adjoint to A⊗−.

Associativity is also very important. In fact, it is equivalent to the possibility to
replace (4) by

H(A⊗B,C) ∼= H(A,H(B,C)).

Thus, one may argue that only under (1) and (2) one can justly think of H as an
exponentiation.

3. The existence of the unit E seems to be slightly less essential. Therefore, we
will also discuss the case with (3) dropped.

4. Of course, ⊗ determines H and vice versa.

1.3. As all A ⊗ − and − ⊗ B are left adjoints, they preserve colimits. In the next
section, we will show how the objects of Gph can be obtained in a canonical way
as colimits of diagrams featuring two objects only. Thus, a tensor product is de-
termined by values in these objects and mappings between them. This observation
will be used in Section 3 and further.

1.4. We will be concerned with the categoryGph of symmetric graphs (with possible,
but not mandatory loops) and edge preserving mappings. Denote by

U : Gph→ Set

the functor reducing a graph to its vertex set. We will be concerned with regular
tensor products, namely those ⊗, for which

U(A⊗B) ∼= U(A)× U(B).

2. The comma-construction.

2.1. In this section, we will recall in some detail the well-known fact that there is
a very small dense subcategory of Gph.

Let us introduce the following notation: P is the graph ({0},⊘) with one vertex
and no edge, whereas I is the graph ({0, 1}, {01}), i.e. two vertices joined by an
edge.

We have the homomorphisms

ιi : P → I, ιi(0) = i; ε : I → I, ε(i) = 1− i

which, together with the identities of P, I constitute a full subcategory A of Gph.

For a graph A ∈ Gph, define the category

CA
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the objects of which are morphisms α : X → A (X = P, I) and the morphisms
α→ β of which are the commuting triangles

X
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β

Y

this will be indicated as (α, γ, β).
(This is the comma-category determined by A and A in Gph—cf. [4].)

2.2. Define diagrams
DA : CA → Gph

by putting DA(X
α
→ A) = X, DA(α, γ, β) = γ. Moreover, put

λα = α : DA(α)→ A.

It is well-known (and easy to check) that (λα)α is a colimit of DA.

3. The matrix of a tensor product.

3.1. In the sequel, we will use the following easy (and well-known) observation:
Let F : C1 × C2 → C be a diagram. Consider functors Fx : C2 → C defined by
Fx(y) = F (x, y), Fx(ϕ) = F (1x, ϕ) and form colimits

(κxy : Fx(y)→ G(x))y .

For ψ : x→ x′ in C1, we have the natural transformations ψ
′ : Fx → Fx′ defined by

ψ′
y = F (ψ, 1y); now the system of equations

G(ψ) ◦ κxy = κ
x′

y ◦ ψ′
y (y ∈ obj C2)

defines a unique G(ψ) : G(x) → G(x′). Obviously, a functor G : C2 → C is thus
obtained. Let (µy : G(y)→ c)y be a colimit of G. Then

(µy ◦ κ
x
y : F (x, y)→ c)x,y

is a colimit of F .

3.2. Suppose we have a tensor product ⊗ on Gph. Since (recall 1.3) − ⊗ A and
A⊗− preserve colimits, it follows by Section 2 that ⊗ is determined by the values
in A×A. Thus, consider a functor

M : A×A → Gph
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such that UM(X,Y ) = U(X) × U(Y ) and M(X,Y ) ∼= M(Y,X). We will show
that we can extend M to a functor ⊗ by colimits (that is, we will see that, when
using 2.2 and taking the natural extension, we will indeed have M = ⊗ | A × A).
This functor will satisfy (2) of 1.1. In the next section we will show that it has an
adjoint exponentiation. Thus, to inventorize our tensor products it will suffice to
check the functors for associativity and unit, which will be done in Section 5.

3.3. For A,B ∈ obj Gph consider the functor

FAB =M(DA(−), DB(−)) : CA × CB → Gph,

and define A⊗B as the top of a colimit

κABαβ : F
AB(α, β)→ A⊗B.

Now let us consider ϕ : A→ A′, ψ : B → B′. Obviously

ταβ = κ
A′B′

ϕα,ψβ : F
AB(α, β)→ A′ ⊗B′

constitutes an upper bound of FAB and hence there is a uniquely defined

ϕ⊗ ψ : A⊗B → A′ ⊗B′

satisfying
(ϕ⊗ ψ) ◦ κABαβ = κ

A′B′

ϕα,ψβ .

It is easy to check that thus a functor

⊗ : Gph×Gph→ Gph

is defined.
FromM(X,Y ) ∼=M(Y,X) it is straightforward to infer that also A⊗B ∼= B⊗A.

3.4. Let K be a small category with a top, that is, with an element ko such that
for each k ∈ obj K there is exactly one morphism γk : k → ko. Then obviously
(γk : D(k)→ D(ko))k is a colimit.
Such is the case with CA×CB for A,B in A, where obviously (1A, 1B) is the top.

Consequently, we see that we can put A ⊗ B = M(A,B). Also, we see that inside
A×A we then also have M(ϕ, ψ) = ϕ⊗ ψ.

3.5. It is perhaps not immediately obvious that A⊗− and −⊗A preserve colimits.
From 3.1 (and 3.4), however, we can at least infer that these functors preserve the
colimits of the diagrams DB : CB → Gph.

3.6. The concrete form of A⊗B: It is a matter of immediate checking that the
colimit A⊗B can be obtained as follows: Take the Cartesian product of the set of
vertices U(A)⊗U(B). For any edge a0a1 in A and b0b1 in B fit into {a0a1}⊗{b0b1}
edges aibj for all edges ij inM(I, I) (note that this includes also loops in A resp. B).
For isolated points (without loops) fill in similarly the edges (resp. loops) according
to those in M(P, P ),M(P, I) and (I, P ).
One also easily checks that in this choice of the colimit ϕ ⊗ ψ is carried by the

Cartesian product of the maps of vertices.
In particular, note that

3.6.1. (ιi ⊗ 1B)(P ⊗B) cover the vertices of I ⊗ B.
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4. The adjunction.

4.1. If an H satisfying (4) in 1.1 exists, the homomorphisms P → H(B,C) are
in a natural one-to-one correspondence with P ⊗ B → C and the homomorphisms
I → H(B,C) corresponds to I ⊗B → C. Thus, up to natural equivalence, there is
only one candidate for exponentiation:
We put

H(B,C) = (Gph(P ⊗B,C), R)

with ϕ0Rϕ1 iff there is a ψ : I ⊗B → C satisfying

ϕi = ψ ◦ (ιi ⊗ 1B), i = 0, 1.

Furthermore, for β : B′ → B, γ : C → C′ define

H(β, γ)(ϕ) = γ ◦ ϕ ◦ (1P ⊗ β).

It is easy to check that H(β, γ)is indeed a homomorphism H(B,C)→ H(B′, C′).

4.2. Theorem. Let ⊗ be defined as in 3.3 and let H be defined as in 4.1. Then
there is a natural equivalence

Gph(A⊗B,C) ∼= Gph(A,H(B,C)).

Proof: Recall 3.5 and 2.2. For f : A⊗B → C define f̄ : A→ H(B,C) by putting

f̄(x) = (P ⊗B
ξx⊗1B
−−−−→ A⊗B

f
−→ C) where χx : P → A sends 0 to x. Let xy be an

edge in A.
Consider αxy : I → A sending 0 to x and 1 to y. As αxy◦ι0 = ξx and αxy◦ι1 = ξy ,

f̄(x)f̄(y) is an edge by virtue of the morphism f ◦ (axy ⊗ 1B).
On the other hand, let g : A → H(B,C) be a homomorphism. Define τα :

DA(α) ⊗ B → C for α ∈ obj CA as follows: If α = ξx : P → A, put τα =
g(x). If α = αxy : I → A, there is ψ : I ⊗ B = DA(α) ⊗ B → C such that
ψ ◦ (ι0 ⊗ 1B) = g(x) and ψ ◦ (ι1 ⊗ 1B) = g(y); by 3.6.1 it is uniquely determined
and we put τα = ψ. Obviously, (τα)α is an upper bound of DA(−)⊗B and we have
a uniquely determined g̃ : A ⊗ B → C such that g̃ ◦ (λα ⊗ 1B) = τα (λ from 2.2).
We immediately see that by this definition

g∼−(x) = g(x).

On the other hand, consider f : A⊗B → C and g = f̄ . We have f ◦ (ξx⊗ 1B) =
f̄(x) = τξx by the definition above and also f ◦ (αxy ⊗ 1B) = ταxy by 3.6.1. Thus,
also

f−∼ = f

and we see that f 7→ f̄ and g 7→ g̃ are mutually inverse correspondences.
The naturality is straightforward. �
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5. Associativity.

5.1. Let us first make an inventory of the candidates for the functor M we have so
far. We must introduce some notation:
D is the discrete graph with vertices 0, 1; if A is a graph then A is obtained

from A by adding loops to all vertices; the following are special graphs with vertices
{0, 1} × {0, 1}:

∆ U V W

The disjoint sum of two graphs A,B will be denoted by A + B, in case of several
graphs Ai we write

∑
Ai.

Later on, we will decompose a graph A into the sum A0+A1, where A0 consists
of all isolated vertices (a vertex with loop is not considered isolated even if it is not
connected with any other).

5.2. For the homomorphisms of A we have M(ϕ, ψ) = ϕ ⊗ ψ. Since these are
carried by the Cartesian product of the mappings and since these have to be homo-
morphisms, the value M(P, P ) limits the M(P, I) and M(I, P ) and these in turn
limit theM(I, I) in the obvious way. Further,taking into account the commutativity
and the morphism ε : I → I, we obtain the following possibilities:

(M1) P ⊗ P = P, P ⊗ I = D,
I ⊗ I any of ∆, U, V,W,∆, U, V ,W ;

(M2) P ⊗ P = P, P ⊗ I = I,
I ⊗ I any of U,W,U,W ;

(M3) P ⊗ P = P, P ⊗ I = I,
I ⊗ I either U or W ;

(M4) P ⊗ P = P , P ⊗ I = D,
I ⊗ I any of ∆, U, V ,W ;
out of these, the one with ∆ will differ from all the others and we will refer
to it as (M4.1);

(M5) P ⊗ P = P , P ⊗ I = I,
I ⊗ I either U or W .

5.3. To check the associativity, realize first that sum is a colimit construction and
hence preserved by tensor products. Thus,

A⊗ (B ⊗ C) ∼=
∑

i,j,k=0,1

Ai ⊗ (Bj ⊗ Ck) and

(A⊗B)⊗ C ∼=
∑

i,j,k=0,1

(Ai ⊗Bj)⊗ Ck .
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As I ⊗ I is a part of a well-known associative product in all cases (cf. [2]) we
always have A1 ⊗ (B1 ⊗ C1) ∼= (A1 ⊗ B1) ⊗ C1. Thus, we only have to consider
the summands with at least one discrete factor. We will refer to them as special
summands.
(M1): All cases yield associative products since all special summands are discrete.
(M2): All cases yield well-known associative products (see [8], cf. also [7]).
(M3): This is a less trivial case, but we still easy see the associativity when realizing
that P⊗A = A wheneverA has no discrete points, and thatA⊗B = A⊗B = A⊗B,
if A,B have no discrete points.
(M4): Case (M4.1) is associative: all this product does it putting loops into the
Cartesian product of vertices.
But none of the other three is. Indeed, we have

while

(M5): Here, again, both cases yield associative products. Indeed, all what happens
is adding all possible loops into well-known associative cases.

5.4. Not all of the products have a unit, though. Let us realize that, because of the
assumption of U(A⊗B) = U(A)×U(B), the only two candidates for a unit are P
and P . This excludes (M3), (M4) and (M5): indeed, P is obviously no unit and
neither is P as P ⊗ I has to have loops.
In all cases of (M2) we have a unit, namely P . Finally, in (M1), we have a unit,

namely P , only in the case I ⊗ I = V . In case ∆, resp. ∆, we have P ⊗ I = D,
resp. D, and in all the remaining ones P ⊗ I = I.

5.5. Summary: We have thus proved that there are five tensor products in Gph.
If we do not require units, we obtain seventeen of them.

5.6. Remarks: 1. All what was said in Section 1–4 can be easily modified to fit
the category of oriented graphs (and, of course, other locally presentable categories
as well). Checking the associativity is not quite so easy, though. It is known that
there are 52 tensor products of oriented graphs such that H(B,C) is carried by the
homomorphism set ([7]); those 52 had to be sorted from among the 256 candidates
by a rather tedious procedure. It should be advisable to leave the sorting of the
remainder to computers.
2. One sees that in all cases one can obtain loops in H(B,C) even if B,C have

none. One may well ask whether there are closed tensor structures in the popular
category of symmetric graphs without loops. There are none, and this may indicate
that this category is not quite so nice after all.
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