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Locally conformal cosymplectic manifolds

and time-dependent Hamiltonian systems∗

Domingo Chinea, Manuel de León, Juan C. Marrero

Abstract. We show that locally conformal cosymplectic manifolds may be seen as general-
ized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of

I. Vaisman for the time-dependent case.
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1. Introduction.

There is a well known connection between symplectic geometry and mathemat-
ical physics, particularly mechanics. A Hamiltonian dynamical system is given by
a symplectic manifold (the phase space) and a function on it (the Hamiltonian func-
tion). In [7], I. Vaisman shows that locally conformal symplectic manifolds may be
seen as generalized phase spaces of Hamiltonian dynamical systems, since the form
of the Hamilton equations is preserved by homothetic transformations.
The purpose of this paper is to extend the results of Vaisman to the case of time-

dependent Hamiltonian systems. In this case, the phase space is a cosymplectic
manifold (the odd dimensional analogue of a symplectic manifold) and the Hamil-
tonian function a function on it. Then we prove that locally conformal cosymplectic
manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian
systems.

2. Cosymplectic manifolds and time-dependent Hamiltonian systems.

An almost cosymplectic manifold is a triple (M,Ω, η), where M is a (2n + 1)-
dimensional manifold and Ω and η are a 2-form and a 1-form respectively on M
such that η ∧Ωn 6= 0. If, in addition, Ω and η are closed, i.e., dη = 0, dΩ = 0, then
M is said to be a cosymplectic manifold ([3], [6]).
Let C∞(M) be the ring of differentiable functions on M , and Ξ(M),Λ1(M) the

C∞(M)-modules of differentiable vector fields and 1-forms onM , respectively. IfM
is an almost cosymplectic manifold, then there exists an isomorphism of C∞(M)-
modules

(1) A : Ξ(M) −→ Λ1(M)
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defined by

A(X) = iXΩ+ η(X)η

(see [6]). The Reeb vector field ξ is given by ξ = A−1(η). Thus ξ is characterized
by the identities iξΩ = 0, η(ξ) = 1. Now, let f : M → R be a differentiable
function defined on M . Then there exists a unique vector field Xf on M such that
A(Xf ) = df − ξ(f)η + η, i.e., Xf is the vector field characterized by the identities

iXf
Ω = df − ξ(f)η, η(Xf ) = 1.

If (M,Ω, η) is cosymplectic, we call Xf the Hamiltonian vector field with the
energy function f . In fact, this construction generalizes the corresponding one for
Hamiltonian vector fields on a symplectic manifold ([1], [4], [5]).

Next, we show that the phase space for a time-dependent Hamiltonian system is
a cosymplectic manifold.

Let (S, ω) be a 2n-dimensional symplectic manifold. Consider the product man-
ifold R × S and denote by π : R × S → S the canonical projection defined by
π(t, x) = x, t ∈ R, x ∈ S. We set ω̃ = π∗ω, η = dt. Then (R × S, ω̃, η) is a co-
symplectic manifold. If H : R × S → R is a function, let XH be the Hamiltonian
vector field for H , i.e., XH is the unique vector field on R× S characterized by the
identities

iXH
ω̃ = dH −

∂H

∂t
dt, dt(XH ) = 1,

since the Reeb vector field is ∂/∂t.

Consider the canonical coordinates (qi, pi) on S and (t, qi, pi) the induced coordi-
nates on R×S, where t is the canonical global coordinate on R. Since ω̃ = dqi∧dpi,
we deduce that

XH =
∂

∂t
+

∂H

∂pi

∂

∂qi
−

∂H

∂qi

∂

∂pi
.

Hence the integral curves σ(t) = (t, qi(t), pi(t)) of XH satisfy the Hamilton equa-
tions:

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −

∂H

∂qi
.

We remark that the Hamilton equations may be also obtained, if one considers
a function H : M → R on an arbitrary cosymplectic manifold (M,Ω, η). In fact,
there exists a local coordinate system (t, qi, pi) on M such that

Ω = dqi ∧ dpi, η = dt.

So, the cosymplectic manifolds provide a good geometric framework for time-
dependent Hamiltonian systems.
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3. Locally conformal cosymplectic manifolds and time-dependent Hamil-

tonian systems.

An almost cosymplectic manifold (M,Ω, η) is said to be locally conformal
cosymplectic (l.c.c.), if there exist an open covering {Uα}α∈A, and a system of
functions σα : Uα → R such that

(2) d(e2σαΩ) = 0, d(eσαη) = 0.

The local 1-forms dσα glue up to a closed 1-form θ satisfying

(3) d(Ω) = −2Ω ∧ θ, d(η) = η ∧ θ.

Conversely, if there exists a 1-form satisfying (3), we obtain a family {Uα, σα}
satisfying (2) (see [2]). We call θ the Lee form. Clearly, if (M,Ω, η) is cosymplectic,
then it is l.c.c. and its Lee form vanishes.
Let (M,Ω, η) be a l.c.c. manifold with Lee form θ. Then we may define a vector

field B on M by
A(B) = θ − θ(ξ)η,

where A : Ξ(M)→ Λ1(M) is the isomorphism given by (1) and ξ is the Reeb vector
field of M . We call B the canonical vector field.
Next, let f :M → R be a function onM . Then there exists a unique vector field

Xf on M defined by

Xf = A−1(df − ξ(f)η + η) + fB,

i.e., Xf is characterized by the identities

iXf
Ω = df − ξ(f)η + f(θ − θ(ξ)η), η(Xf ) = 1.

We call Xf Hamiltonian vector field with energy function f . This definition
generalizes the corresponding one for cosymplectic manifolds (see Section 2).
Now, consider a time-dependent dynamical system with n degrees of freedom.

Its phase space is a (2n+ 1)-dimensional cosymplectic manifold M . We know that
the dynamics consists of the orbits of a vector field XH (the Hamiltonian vector
field for the energy H) on M (see Section 2). In fact, we have an open covering of
coordinate neighborhoods {Uα}α∈A with local coordinates (tα, qi

α, pα
i ), 1 ≤ i ≤ n.

The Hamiltonian H and the cosymplectic structure (Ω, η) restrict to each Uα given
by a local Hamiltonian Hα = Hα(tα, qi

α, pα
i ) and a cosymplectic structure Ωα =

dqi
α ∧ dpα

i , ηα = dtα, respectively. Then XH restricted to Uα is precisely XHα
.

Thus, the orbits are given by the Hamilton equations

(4)
dqi

α

dtα
=

∂Hα

∂pα
i

,
dpα

i

dtα
= −

∂Hα

∂qi
α

.

(We notice that tα = t is a global coordinate.)
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Now, let M be an arbitrary 2n+ 1-dimensional manifold endowed with an open
covering of coordinate neighborhoods {Uα}α∈A with local coordinates (tα, qi

α, pα
i ),

1 ≤ i ≤ n and consider the coordinate transformations

(5) tβ = tβ(tα, qi
α, pα

i ), qi
β = qi

β(tα, qi
α, pα

i ), pβ
i = pβ

i (tα, qi
α, pα

i ).

Since the dynamic information is given by a global vector field (the Hamiltonian
vector field) we are only interested in the case when (5) preserves the form of the
Hamilton equations (4). Clearly, if (5) implies

Ωβ = dqi
β ∧ dp

β
i = dqi

α ∧ dpα
i = Ωα, ηβ = dtβ = dtα = ηα, Hβ = Hα ,

where Hα : Uα → R, α ∈ A, then (5) preserves (4). But this also happens, if (5)
implies

(6) Ωβ = λ2βαΩα, ηβ = λβαηα, Hβ = λβαHα ,

where λβα = const. 6= 0. In fact, from (6) we obtain

XHα
= λβαHHβ

,

and hence the integral curves of XHα
and XHβ

are the same. Further (6) implies

the cocycle condition

(7) λβαλαγ = λβγ .

We know that (7) implies the existence of the local functions σα : Uα → R
satisfying

λβα =
eσβ

eσα
.

Thus

Ω = e−2σαΩα, η = e−σαηα ,

are globally defined on M . Hence (M,Ω, η) is a locally conformal cosymplectic
manifold. Moreover, we may define a global function H :M → R by H = e−σαHα,
and the corresponding Hamiltonian vector field XH is given by

XH = eσαXHα
.

Therefore, the locally conformal cosymplectic manifolds may be consi-
dered as natural phase spaces of time-dependent Hamiltonian dynamical

systems.
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