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ON RANDOMISED SOLUTIONS OF LAPLACE’S EQUATION

Ivo BABUSKA, Praha
(Received January 6, 1960)

The questions studied in this paper are randomised solutions of the
Dirichlet and Poisson problem for Laplace’s equation with random boundary
conditions and random nght-hand side respectively.

The partial differential equations of mathematical physics always contain a set
of coefficients and factors which, in general, serve to describe certain physical en-
tities. Thus in the equation of heat diffusion there appear coefficients of heat con-
duction, of specific heat and of density; in the mathematical theory of elasticity, the
module of elasticity plays an important part, etc. The magnitude of these coefficients
is in every case determined by measurement — and subsequent calculations then
use the mean value of these experimentally obtained values. In fact, of course, these
physical constants are not really constant at all, but vary from place to place in the
material, and often may well be considered as random functions. In actual cases the
variance is not negligible; e. g. the rigidity of concrete in dams will often have a
large coefficient of variance, reaching even 30% or more. :

The situation with boundary and initial conditions is similar. For instance, in
certain problems connected with large dams, it is important to determine the effect
of (atmospheric) external temperature; this temperature will then appear as a bound-
ary condition in the problem of heat conduction. Here also it is the mean temper-
ature that is usually considered, while its variance is obviously not negligible.

Similarly for rounding-off errors in numerical solution, if considered statistically.
If we study the effect of these errors on Ritz’s (Richardson’s) iterations in the re-
laxation solution of Dirichlet’s problem, we have the problem of random heat
sources in the equation of heat conduction, i. e. a random right-hand side.

There is a whole series of similar problems. For connected questions see
[11. [21. [3]-

In the present paper we will study some questions connected with random bound-

ary conditions and random right-hand sides for the Dirichlet and the Poisson pro-
blems.
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I. THE DIRICHLET ;PROBLEM FOR LAPLACE’'S EQUATION
WITH RANDOM BOUNDARY CONDITIONS

1. In this chapter we will study the problem of randomised solutions of Dirichlet’s
problem with random boundary conditions. Our starting point will be the so-called
classical solution; by this we mean the classical formulation of Dirichlet’s problem
and its generalisation in Wiener’s sense. We might also start with solutions determ-
ined on the basis of variational principles; but we will rather consider general
regions, and solutions generalised in Wiener’s sense.

In the sequel, E, with n = 1, 2, 3, ... will be the n-dimensional Euclidean space,
K the open unit parallelepiped in E,, and K its closure in E,. & denotes the set of
all real-valued functions y defined on K. There will also be given field of sets 2 whose
elements are subsets of € and such that € € ¥; and a s-additive non-negative function
p defined on %, such that u(€) = 1. The elements # e € will be called elementary
events, and ‘elements of Y will be called random events. The set-function u will be
termed a probability measure. '

Functions defined on € will be denoted by f, g, etc.; and f(n), x € K, will be the
function defined on € x K by fu(n) = n(x). We will always assume that for every
xeK the funcuon fi(n) is p-measurable and that

V,1 : fﬁ@wgﬁ<w
e
with C independent of x; and also that x€ K, ye K
"2 ﬁmj (Fdn) = £(m)* dp. = 0-

The set consisting of all functions f,(n) deﬁned on & for every xe K, and of the
function ze(n) = 1 will be denoted by L**. L* will then be the linear module over
L** with the reals as coefficient domain.

- We will define a scalar product and norm in L* by

(91 gz) ng(n)gz(rl)du, g;eL , gaeLl*, lgl*=(9,9)-

This scalar product is obviously meanmgful since each gieL* e=12,...i8a
linear combination of functions f, ,(71); x;ekK,j=12,...,N, and of the function
Zo(n) = 1. ‘

Lwill be the completion of the linear space L* with respect to the norm just define;
and (glgz) lgll will be the corresponding extensions of scalar product and norm,
respectlvely S

. 2. Let there be given a continuous function ¢, defined on K, and a region w1th
Q'c K. Denote by W(p, x) the function defined on K in thg following manner,

1) Evidently every element g € L is a u-measurable function defined on €.
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1. x ¢Q for W(, x) = ¢(x),

2. for x € Q, W(g, x) is the generalised solution of the Dirichlet problem for La-
places equation on @, with the boundary condition defined by ¢(x) on the frontier
of Q. The function W(p, x) will be called the solution of Dirichlet’s problem for
boundary function ¢.

Note 1. The solution W(p, x) is dependent only on the values which ¢ assumes
on @ (' is the frontier of Q). Thus it would have sufficed for the set of elementary
events to consist of functions defined on Q only. For formal reasons, however, we
use the set of elementary events formed by functions on K.

Note 2. It can be proved that, for every x € Q, there exists a measure function
o(x) on £ such that

W(p, x) = _L- o(x) do(x) .

Our next step will be to define solutions of the Dirichlet problem for random
boundary conditions. This can be performed in diverse ways; and it becomes ne-
cessary to impose different conditions in the space of elementary events €. For
instance, we might assume that almost all functions n € € are continuous. To every
such realisation we can then determine the solution W(y, x), and then consider it
as a random function. Such a definition is analogous to Slutsky’s definition of the
integral of a random function (see [4]). E. SLUTSKY assumes first that almost all
realisations are measurable, so that almost all possess an integral; the resulting
random function is then studied (cf. J. L. DooB [5]). Later it was realised that this
definition is not satisfactory since the value of the integral need not be a random
magnitude in the corresponding field of probabilities (cf. [6]). Since then the quest-
ion of a definition of the integral of a random function has been studied intensively,
and a number of definitions has been put forward. Since the solution of the Dirichlet
problem is very closely connected with the notion of integral (see our Note 2), it
is evident that these results are applicable. In this direction, M. J. KamPE de FERIET
[7], solves the problem for a very special region (the interior of a circle) and with
rather strict conditions on the field of probabilities. Our method will be similar to
that of K. KARHUNEN [6] in defining the integral of a random function.

Definition 1. A random function w(, x) defined on € x K will be termed a random
Wienerian solution of the Dirichlet problem on Q, with the boundary condition de-
fined by f,(n) if w(n, x) € Lfor every x € K, and, for every z € L,

(z, w) = W((2, £x(n)): x) .

This definition evidently has sense, since in view of property V,2 (z, f(n)) is a con-
tinuous function of x on K, so that W((z, fu(n)), x) is defined. Now, the following
theorem holds.
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Theorem 1. There exists precissely one random solution of the Dirichlet problem
in the sense just defined.

Proof. It is simple to show that, for x fixed, W((z, fx(ﬂ)) x) is a continuous
linear functional on L. Indeed, for ||z]| < 1 and all x, we have (z, f,(1)) < C. From
the maximum principle it then follows that W((z, f.(1)), x) < C; linearity is obvious.
By the Riesz-Fischer theorem, there exists precisely one w(r, x) such that (z, w) =
= W((z, f.{n))> X)- This proves theorem 2.

Note 1. If L has finite dimension (so that essentially it is a Euclidean space),,
evidently definition [1] is equivalent to the definition mentioned above, eg. to the
definition using realisations.

Note 2. When defining the space L**, we added the function zo(n) = 1. It can
be shown easily that this has no effect on w(t], x).

3. Now define o(x, y) = (f(n), f,(n)); this function e(x, y) will be called the
covariantive function. From V,2 it follows that o(x, y) is a continuous function of

x,y on K x K.

According to theorem 1, there is preclser one random solution of the Dirichlet
problem in the sense of definition 1; this solution we denoted by w(7, x). Now
w(n, x) € Lfor every x, so that we may define the function R(x, y) = (w(n, x), w(n, ))-
This function R(x, y) will be called the covariantive function of the random solution

of the Dmchlet problem on Q.

Theorem 2. Let k,(x, y) = W(g(x, ¥), X), K(x, ¥) = W(o(x, y), y). Then R(x, y) =
= Wl 7 7) = W ) 2.

Proof. By defmmon L, (z, w(n, x)) W((z, £(n)), x). Set therefore z = w(n, ¥);

we obtain ; ‘
4o R(x,3) = (w(m. »), wln, ) = W(0w(n. ). Sn). %) -
(vl ) o)) = ‘(f»(;ll W(ﬂ ) = W((£Ln): £m))s ) = W(elx, ¥), ) = x,(x, y) -
Thus R(x, y) = W(x,(x ¥), X). The remainder of our theorem is obtained by sym-
metry.
Corollary to theorem 2. Let y ¢ Q. Then R(x, y) = x(x, ).
Proof. By theorem 2, we have R(x, y) = W(i(X, ), ). Since y ¢ 2 by assumpt-
ion, W(k(x, y), y) = x,(x ). But this is our statement.

Theorem 3. Let o(x, y) < &; then R(x, y) < e. This is an immediate consequence
of theorem 2 and the maximum prmcxple

. The fanction w(x) = [¢ w(n, x) du will be termed the mean value of the random
solution. The function f(x) = fg f.(17) dx will be termed the mean value of the random
conditions. :
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We then have the following theorem:

Theorem 4. Let w(r, x) be the random solution in the sense of definition 1. Then
w(x) = W(f(x), x).

Proof. This theorem follows from definition 1 immediately. Indeed, zo(1f) = 1€ L,
so that (zo, w) = W((2o,f(1, X)), x). But in addition we have that (zo, W) = w(x),
(20: £(n, %)) = f().

Note 1. Theorem 2 makes possible an effectlve computation of the covariantive
function R(x, y).

Note 2. When constructing the space L we had assumed that the probability
field had certain properties. In the actual construction, we start with the experi-
mental data and construct the covariantive function g(x, ). This will usually not be
determined quite precisely, i. e. it will somewhat differ from the true covariantive
function describing the probability field according to all the assumptions. Theorem
3 then states that a small error in the determination of ¢(x, y) will lead to an error
also small in the determination of R(x, y).

Note 3. Theorem 4 confirms the intuitive conclusion that calculations starting
with mean values determine the mean value of solutions.

Note 4. In our theorems we used the function o(x; y) defined for all x € K and
y € K. However, it is obvious that to determine R(x, y) with x € @, y € &, it suffices
to know g(x, y) for xe @', ye Q" only (@ is the frontier of Q). In other words, two
correlation functions identical on € x Q" define the same function R(x, y).

Note 5. Essentially, theorem 2 is a formulation of a special problem on differential
equations or their systems. The boundary conditions are not given on the frontier
of the range of definition, i. e. on (2 x Q)’, but merely on its “edges” Q" x Q.

Note 6. From theorem 2 it follows that all the properties of the Laplace equation
are, in essénce, preserved. E. g. the region remains stable for the problem of determ-
ining R(x, y) if it was originally stable for the Laplace equation.

Note 7. Theorem 2 makes poss1b1e an effectlve numerical computation of the
function R(x, y).

II. THE POISSON PROBLEM FOR LAPLACE’S EQUATION
WITH RANDOM RIGHT-HAND SIDE

In this chapter we will use the notation of the preceding ‘chapter; this mostly
concern Q, K, €, L, (u,v), [[uf. We will study the problem Au = f with a random
functions f. The Dirichlet boundary conditions are assumed homogeneous.

1. Let there be given a continuous function ¢ on K and a region Q < Q< K.
Define a function P(¢, x) on K thus -

P(g. x) = Q(e, x) — W(Q(x), x)
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,-<'$y )

where we have put

rnzq’(é)dK for n>2,

e Q(¢,x) — _lj lgli'(;.(g)dK forn=2,
Uity Lo xr R

"ljr(p(f) dKk' “forn=1
i 2)x .

r=lx'—¢1=J§1(xi—¢i)’,

® is the surface of the unit sphere in E,, & = (¢4, .. DE)EK x = (Xgp o0 X )ek.
The function’ P(e, x) will be called the solutlon of the Po1sson problem for the‘.
function ¢ (andforregxon Q) kT i

) the 1. The functton P(go, x) 1s_thc soluuon‘of the Poxsson problem for homoge-""j%';’;:;;j

» *u‘

| zgro) boundary condmons. e
;‘:“‘Q'NQ%C ZJIIIG deﬁmtlon ewdenﬂy has sense, 1f go is contmuous then (o, x ) §

7>>

contmuous on 'K, so that we can consider the function W(Q(x) x).

Note 3. If the function ¢ is sufficiently Tegular = e. g. if its first partial are con- o

tmuous — then P(p, u) has continuous second partials on Q and AP(g, x) = ¢.
However, if ¢ .is merely continuous, the’function P(g, x) need not have second, -
pamals at aII Sand AP((p, x) = P must. be consnlered in the generahsed sense.
. -Note 4.J£ Q then obwouslyJP(qo, x) 0. g ;' : oL
Aﬁ“ these; A ,_‘troductory remaxks wWes proceed tO;the deﬁmtlon of the random: -

¥

' 1 ] random func’uoﬁ ﬁ(r]? x) deﬁned on (f x K wﬂl be termed a random’
b so!uhon of' the Pomson problem on'Q, 1f q(r], x) €L for every xe K and (z q) =
P((z, ), x) fot every' Zel T -
* This deﬁmtlon ewdently ‘has semse since by V,2 (z f,,(n) is a continuous function °
ofanK KBS SO AN fx@:ﬁﬂ ' . '

'I'beorem 5. TI?zere exists preczsely one random solutzon of the Poisson problem
: mthesenseofdeﬁmtwnz. JEREEES S S TR '

g The proof Is s1m11ar to that of theorem 1
2. As in the preoedmg chapter, We denote ‘

i - v,

R(x y) = (q(n, %), a(n, y)) and e(x y) (fx(n) £,n)) -
Then the following theorem hOIdS‘ - '
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Theorem 6. Let x,(x, ) = P(a(x, ¥), X), (%, y) = P(e(%, y), y)- Then R(x, y) =
= P(ku(x: 1) ¥) = P(i,(x, y), %)-
The proofis just as in theorem 2.

Theorem 7. Let |o(x, y)| < e. Then R(x, y) < 3e.

The proof follows easily from theorem 6. Indeed, since K is the unit parallele-
piped, we have x,(x, y) < 3¢ and thus R(x, y), etc.
* The function g = [ (17, x) du will be termed the mean value of the random so-
lution. The function f(x) = [¢ f(n, x) du will be termed the mean value of the random
right-hand sides. Then the following thorem holds:

Theorem 8. Let g(n, x) be the random solution of the Poisson problem in the
sense of definition 2. Then q(x) = P(f(x), x).

The proof is similar to that of theorem 4.

Note. As to the significance of these theorems, remarks similar to those of the
preceding chapter might be made.

3. We have been concerned with the randomised differential Poisson problem.
Completely analogous theorems can be proved for the relaxation method solution
of the Poisson problem, i. e. the solution ‘of the difference-form Poisson problem.

4. On the basis of the preceding results the correlation function R(x, y) of the
randomised solution may be found. Obviously in the general case nothing can be
stated about the distribution function of solutions at a given point. In actual cases,
however, it is usually possible to assume that the process is Gaussian, so that the
solution will be a random varjable of Gaussian type also, and is completely character-
ised by the covariantive function.
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Vytah

O ZNAHODNELEM RESENT LAPLACEOVY DIFERENCIALNf
ROVNICE

Ivo BaBuSka, Praha _

V praci se studuje problém znihodnglého feSeni Dirichletova resp. Poissonova
problému na obecnych omezenych oblastech pro nahodové okrajové podminky resp.
pravou stranu. _

Vychazi se pfitom ze slabého feSeni problému, podobné jako zavadi zndhodnély
integral K. KARHUNEN [6]. .

Je konstruovina kovariandni funkce R(x, y) hledaného feSeni z kovarianéni
funkce okrajovych podminek resp. pravé strany.

Pesrome

O CIIVYAMHOM PEIIEHUU JiI/ICI><I>EPEHLII/IAJIBHOFO
VPABHEHW JIAILIIACA

HNeo Babymmxa (Ivo Babuska), IIpara

B pabote mccnenyercsa npobuema ciaydaHoro pemenus 3amad Jupmxie u ITyac-
COHA Ha OPraEEYEHHHX OGNACTSX OBIIEro BHIA NpH CIYJaffHbIX KPAEBBIX YCIOBHSX,
COOTB. IIPH CIy4aiHOA OpaBoi JacTH. .

IIpr 3TOoM aBTOp HCXOIHT ¥3 ciaboro pemends mpobieMsl, mOXOOHO TOMY,
xak K. KapryseH BBOOAT CIydYaiEbId mETerpai [6].

ITocrpoena xoBapraHTHas QyHKIES R(xX, y) HCKOMOI'O DEIIeHAS A3 KOBAaPHAHTHOR
&YBKIEE KpaeBHIX YCIOBHHM, COOTB. IPaBOi JACTH.
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