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éasopis pro péstovani matematiky, ro€. 88 (1963), Praha

ON THE CONVERGENCE OF SEQUENCES OF STOCHASTIC
PROCESSES

FrRANTISEK ZITEK, Praha
(Received November 20, 1961)

The aim of this paper is to complete the results of the first part (§§ 1—3) of
Kimme’s paper [1], the main emphasis being on properties of the limit
process such as continuity, absolute continuity, etc. The inspiration has been
provided by the parallel between the classical theory of limit laws, and the
theory of random functions of intervals (see [4], [5]).

1. INTRODUCTION

Following E. G. KiMME [ 1], we shall start from a fixed probability space (2, 4, P)
having all the properties that are needed; all random variables we shall consider here
will be defined on this space. We shall consider double sequences of random variables

(1.1) {Xuts k=12,..,ksn=12,...,
where k, — o0 when n —o0. For any fixed » the random variables X, X,.5, ..., Xy,

are assumed to be stochastically independent (en bloc). For each £, 0 < ¢t < 1, let us
put

(1.2) kff) = [tk,]
and then define

Kn(t)
(1.3) X,(1) =kle"" .

If k,(t) = O for some ¢, the corresponding X,(t) is defined to be a random variable
such that P{X,(#) = 0} = 1. In particular, we have P{X,(0) = 0} = 1 for all n.

For n fixed, X,(?) is a random function with independent increments defined on the
interval <0, 1).

E. G. Kimme [1] has studied problems of convergence of sequences of random
functions of the type (1.3) to corresponding limit random functions with independent
increments. We shall continue his work here with special reference to the continuity
properties of the limit random functions. In doing so, we can take advantage of the
parallel existing between the theory of limit laws for sequences of the type (1.1) and

283



the theory of random functions of intervals which has been developed in our earlier
papers [4], [5] and [6] (see also [7]): we shall assume that the basic notions and re-
sults of [4], [5], [6] are already known.

Random functions defined on {0, 1) will therefore be expressed in two parallel
ways: i) as point-functions X(), 0 < ¢t < 1; ii) as functions of intervals X(zy, 1,),
0=t =t, £ 1, with the obvious relation

(1.4 X(t;, 1) = X(t5) — X(1) .
‘We now can write
kn(tZ)
(1.5) X(t, )= Y X
k=kn(t))+1

where, of course, P{X,(t,, t,) = 0} = 1 whenever k,(t;) = k,(t,).

We also use the standard notation for the corresponding distribution and character-
istic functions:

Fu(x) = P{Xp S x}, ouls) = [e** dFu(x),
and
F(t;x) = P{X,(f) £ x}, F(t;x) = P{X(t) < x},
Fo(t, t2; x) = P{X,(t,, 1)) S x}, F(ty, t2;x) = P{X(t1, t,) < x}.
In the sequel, the term ‘“‘random function® always means ‘“‘random function with

independent increments”, as other types of random functions will not be considered.

Given a sequence (1.1) we shall say that it is convergent if there exists a random
function X () — called the limit of the sequence (1.1) — defined on <0, 1) and such
that for every pair (¢;,2,),0 £ t; £ t, £ 1, we have

(1.6) lim F,(t, t;; x) = F(ty, t5; )
for all x that are points of continuity of the function F(t,, t,; x).!)

Condition (c) will be said to hold for a given sequence (1. 1) if for every ¢ > 0 we
have

1.7) lim max P{|X,|l =¢ =0.

n>o 15kSky

Another equivalent form of this condition is the following: for any ¢ > 0, ¢ > 0
there exists an N > Osuch thatn > N, [s] £ 0, 1 £ k £ k,, implies

(1.8) ' lowm(s) — 1] < .

We now shall consider convergent sequences of the type (1.1) satisfying condition
(c) and study some properties of their limits.

1) It has been shown (see [1]) that this kind of convergence is sufficiently general in the case of
random functions with independent increments.
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2. CONVERGENCE TO A CONTINUOUS LIMIT

Let a sequence (1.1) be given; for k = 1,2,...,k,,n=1,2,..., —c0< y <oo, let

(2.1) e = (T) = J x dF,(x), 0 <t =const,
[x] <z
(2.2) Yk = Ong +J. ad 5 dF (X + %),
x?
(23) nk(y ) J- dF nk(x + ank)
Furtherletfor 0 £t <1
k,.(f kn('
(24) ')’,.(t) Z ‘Ynk > G (t y ) Z Gnk(y)

where 7,(t) = 0, G,(t; y) = 0, whenever k,(t) = 0.
Our condition (c) (which we always assume to hold) implies then (see [1], p. 215)

2.5) lim max |ou(7)] =0,

n~>o 15k=<k,

(2.6) lim max |yl =0,
n—>o0 15ksky
2.7 lim max [G.(0) =0.

n—>ow .1=kZk,

It follows then from Kimme’s Theorem 1 (see [1], p. 211) that the convergence of
(1.1) is equivalent to the convergence of the onedimensional distribution functions
F,(t; x) to F(t; x) (for every ¢, 0 < ¢t < 1, at all continuity points x of the function
F(t; x)). Hence the following condition given by Kimme is necessary and sufficient for
the convergence of (1.1):

Condition (K): There exist a real function y(f), 0 < t £ 1, and a bounded real
function G(t,y), 0 £t < 1, —o0< y <00, such that

(2.8) lim G(1;y) =
and T
(ko) | iim 3,(6) = (0,

for0st=<1,

(KB) lim G,{t, y) = G(t, y)

n—*co

for 0 < t £ 1 and for all y that are continuity points of G(¢, y),
(Ky) A_ lim G,(t, o) = lim G(t, y) .

n—o0 y—®
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Remark 1. The relation (2.8) included here in the formulation of condition (K)
has been considered by Kimme as an obvious property of the function G(t, y). How-
ever, it is easy to give an example of sequence (1.1) which is not convergent even though
it satisfies all Kimme’s conditions, but with G(z, y) = 1 for all €0, 1), y € (— o0, o).

A random function X(r) defined on <0, 1) is called continuous at t, € €0, 1) if for
every ¢ > 0 there exists a § > 0 such that for ¢ € €0, 1), |t — t,| < J, we have

2.9) P{X(t) — X(to) = &) < ¢.

If X(¢)is continuous at each ¢ € {0, 1), we shall say that it is continuous in the interval
<0, 1>.

Remark 2. Since the interval <0, 1) is compact, any random function X(¢) conti-
nuous in <0, 1> is also uniformly continuous in <0, 1)>; this means that for every
& > 0 there exists a > 0 such that the inequalities 0 £ ¢t; £t, < 1,t, < t; + 6,
always imply

(2.10) P{X(t;, 1))l = e} S e.

Kimme’s Theorem 4 (see [1], p. 213) states that the random function X(Z), the limit
of a convergent sequence (1.1), is continuous at t,€ <0, 1) if and only if the correspond-
ing functions y(t) and G(t, co) are continuous at t,. Then in this Theorem 5 Kimme
shows that the limit X(7) is continuous in €0, 1) if the convergence in (Ka), (KB) and
the left-hand member of (Ky) is uniform in 2.%)

This uniform convergence is, of course, only sufficient; in order to obtain a neces-
sary and sufficient condition we have to replace it by the quasi-uniform convergence
(see e.g. [3], p. 155, 7.2d). Hence we have

Theorem 1. In order that a given sequence (1.1) be convergent to a limit random
Sfunction X(t) continuous at ty € {0, 1), it is necessary and sufficient that condition
(K) holds and that the convergence in (Ko) and (Ky) be quasi-uniform at t,.

Proof. Since the convergence of (1.1) follows from our condition (K) (see [1],
Theorem 4), it will be sufficient to prove that the continuity of y(f) and G(t; o) at #, is
equivalent to the quasi-uniformity of the convergence in (Ka) and (Ky). Let us first
suppose that the convergence in (Ko) is quasi-uniform in ¢ at t = t,. For all tand all n
we have

Q11)  Iy(to) — YO = I¥(to) — ¥alt)l + 17alte) — 71 + I7.(2) — »(®)! -

First, it follows from (Ko) that [¥(t) — 7.(to)| will be arbitrarily small if » is large
enough. Then the fact that the convergence in (Ka) is quasi-uniform implies that for
every sufficiently large n there exists a 6; > 0 (dependent on n) such that |y,(t) — (1)l
will be small for |t — t,| < §,. Finally, (2.6) shows that max |y,| will be small if n

15kSkn
is large enough. Let us now choose an n which is “sufficiently large” in the sense of all

2) Clearly, the convergence in the right-hand member of (Ky) is also uniform in z.
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these conditions. Then there exists a d, > 0 such that |t — t,| < 6, implies |k,(¢)—
— k(to)l £ 1, and hence |y,(t) — 7.(to)] < max |y, |. Thus, for |t — t,| < min(5,,8,)
all three terms of the right-hand side of (2.11) will be small. Therefore, the function
9(¥) is continuous at #,.

Let us suppose now that p(f) is continuous at a point , € €0, 1). Instead of (2.11)
we shall take the analogous inequality

212) 7)) — YOI = 1ya(®) = 74l + [2a(te) — ¥(t0)] + I¥(te) — y(O)! -

Since y(¢) is continuous at z,, |y(t,) — (2)| will be small if |t — t,| is small enough.
Then (Ko) implies that |y,(t,) — (o) will also be small for large n. As to the first
term of the right hand side of (2.12), we proceed in the same manner as in proving
sufficiency. Thus, for n large and |t — t,| small |y,(f) — 7(¢)| will be small, and there-
fore the convergence in (Ko) is quasi-uniform at .

The case of (Ky) and G(t, o) is quite analogous and we shall omit the corresponding
part of the proof.

If we restrict ourselves to the usual convergence in (K), our condition (c) will be
insufficient to guarantee the continuity of the limit random function X(¢), but it is
possible to formulate a stronger condition:

Condition (cc) will be said to hold for a given sequence (1.1) if for every & > 0 there
exist an N > 0and a §, 0 < § £ 1, such that for all » > N the inequality r < dk,
implies

j+r
(2.13) P{ Y Xulze e, j=0,1,..,k,—r.
k=j+1

Theorem 2. If a convergent sequence (1.1) fulfills condition (cc), then the cor-
responding limit random function X(t) is continuous in 0, 1).

Proof. Let t, € €0, 1), ¢ > 0. Since condition (cc) holds, there exista 6 > 0 and an
Ny > 0 such that (2.13) holds for r < dk,, n > Ny. We shall now prove that for
te (0, 1), |t — ty] < 6, we have
(2.14) P{X(t) — X(to)l Z e} = &;
since ¢, is arbitrary, this will suffice to prove our theorem.

Let t €0, 1}, |t — to] < &, be choosen. Since k, —o0 as n — o0, we shall also have
[t — to] + k; ! < & if nis large enough (n > N,, N, depending on 1). If t, < t (for
t < t, the proof is analogous), k,(t,) < k,(?), and for n > max (N, N,) we have

k() — ky(to) S tk, — tok, + 1 < Ok, .
Hence by (2.13)
P{X,(1) - X,(to) 2 e} S e.
On passing to the limit we obtain (2.14), g. e. d.
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3. ABSOLUTE CONTINUITY

By means of (1.4), the notion of absolute continuity, introduced in [4] for random
functions of intervals, can also be applied to point-function (see also [7]).

Condition (ac) will be said to hold for a given sequence (1.1) if for every ¢ > 0
there exist an N > 0 and a 6, 0 < § < 1, such that for all n > N the inequality
r < 6k, implies

(€N)) P{1Y X,5l2ef e, 12j;<j,<...<j, Zk,.
i=1

Remark 3. It can easily be seen that (ac) = (cc) = (©)-

Theorem 3. If a convergent sequence (1.1) fulfills condition (ac), the corresponding
limit random function X(t) is absolutely continuous in <0, 1).

The proof of theorem 3 is analogous to that of theorem 2 (see also [7] and [8]).
Let ¢ > 0 be fixed and let J, N, be the two positive numbers corresponding to ¢ in the
sense of condition (ac). Let us consider any finite system of disjoint intervals (¢;, t}) <

<<(0,1),j=1,2,...,msuch that ) (¢; — t;) < &; we shall show that
; &

(3.2) P iX(t,, Dz <e,

(see [4], p. 587). Again we have Z (tj - t;) + mk;! < §if nislarge enough (n > N,,

N, depending on the system of mtervals) Thus for n > N, we have

3 alt) = b} S T (6t — katy + 1) = by X6 — 1) + m < Ok

Hence for n > max (N,, N,) we obtain from condition (ac)
(3.3) L RIEXGgiza e
J=

On passing to the limit as n — oo we obtain (3.2) q. e. d.

Remark4. Our theorems 2 and 3 confirm once more the parallel between the theory
of limit theorems for sums of independent random variables and the theory of random
functions of intervals and their (BB)-integrals (see also [7], Part I). The corresponding
-analogues are Theorem 1 of [5] and Theorem 10 of [4].

Remark 5. Some applications of theorems 2 and 3 on problems of regularity of
arrival flows in the queueing theory were given in [8].

Given a sequence (1 1) we can form the “associated sequence” (see [7], p. 838) of
random variables X%, k=1,2,...,k,; n= 1,2, ..., whose distribution laws are
determined by the relation . '

(3.4) @m(s) = exp {@uls) — 1} . -
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Thus we can state the following simple generalization of the theorem quoted on p. 838
in [7]:
Theorem 4. A sequence (1.1) satisfying condition (ac) is convergent if and only if

the associated sequence is convergent. Their limits then follow the same laws:
F(t; x) = F*(t; x).

4. DIFFERENTIABILITY

We shall say of a random function X(z), 0 < ¢t < 1, that is has a derivative (a deri-
vative from the right, to be precise) at t = t, if there exists a characteristic function
@(s) such that

4.1) o(s) = exp {lim h™[o(to, to + h;s) — 1]},
h0+
where

o(tos to + h;s) = fei"‘ dF(ty, ty + h; x)

(see [5], §4). The corresponding derivative will be defined as a random variable
DX(?) (independent on the whole X(¢)) having ¢(s) for its characteristic function.

In (1.8) condition (c) was expressed by means of characteristic functions. We could
obtain analogous formulations of conditions (cc) and (ac), too (see also [5], lemma 1);
they are very useful in some considerations, but conditions (2:13) and (3.1) permit a
more intuitive interpretation. We shall now try to get the sufficient conditions that
the limit X(z) of a sequence (1.1) have a derivative. Here it is necessary to use characte-
ristic functions.

Condition (d,) will be said to hold for a given sequence (1.1) if there exists a charac-
teristic function @o(s) such that
(4.2) lim [@u(s)]* = @o(s), =
the convergence in (4.2) being: (i) locally uniform in s (ii) uniform in k in the domain
k = o(k,).

Theorem 5. If a convergent sequence (1.1) fulfills condition (d,), the limit function
X(t) admits a derivative (from the right) at t = 0 and this derivative DX(0) has
@o(5) for its characteristic function.

Proof. Since ¢o(0) = 1, there exists an interval {—a, ¢ in which |po(s)| = 3.
From (4.2) it follows that also |@,(s)] = 3 for — ¢ < s < 0, provided n is sufficiently
large. Thus we can take logarithmes on both sides of (4.2): ¥,a(s) = log @u(s), ¥o(s) =
= log ¢,(s); this gives us

(4.3) ] hm k,, . W,,k(s) = l/lo(s) ?
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where of course, — ¢ < s < o, k = o(k,). Since Yo(s) is finite and k, — o0, for every
fixed s, — 0 < s £ 0, we obtain Y(s) = 0, i. e. @u(s) = 1 in the interval {—ga, o).
Hence (see [2], p. 197) ¢u(s) — 1 for all s, the convergence being obviously locally
uniform in s. But it can easily be shown that it is uniform in k, k = o(k,), too.

It follows from the above that @(s) must be infinitely divisible, so that y(s) exists
for all real s. Hence Y,(s) exists and is finite whenever n is large enough.

We can therefore state that for every ¢ > 0, o0 > 0 there exist an N > 0 and a
&> 0 such that for n> N, |s| < o, k < 6k, we have |k, ¥,u(s) — ¥o(s)] < & and
therefore

(449 [Wuk(s) — K Wo(s)l < ekt .
Hence we have for any positive 7 < &

kn(h)

k (h) kn(h) _ kn(h) -1
k=21 ‘ﬁnk(s) - JE_— '/’o(s) = Ikgl[wnk(s) -k, ! ‘po(s)]l ékglll//nk(s) -k, l/’o(s)l .

Now from (4.4) we obtain for [s| £ o, n > N
kn(h)

g B0, o )
kzZl Vuds) k. Yols)| < P

n

4.5)

Since evidently lim k,(h)/k, = h, passage to the limit (n —o0) in (4.5) yields

4.6) W0, B ) — ho(s)l < he,
where of course Y(0, h; 5) = log ¢(0, h; s). From (4.6) we have the inequality

4.7) (A= Y(0, hss) — Yo(s)l S &

valid for |s| £ o, and 0 < h < §. On passing to the limit for h - 04+ we obtain

another inequality
| im h™ (0, bs s) — Yo(s)l = &
h=0+
which is valid for arbitrary ¢ and for |s| £ ¢ (o being independent of ). We now see
that
lim A1 yY(0, h; s) = Yols)

B0+
locally uniformly in s, so that (see [5], Theorem 9)
lim B[00, b ) — 1] = i(s)
h=>0+

q.e.d.

For ¢ other than ¢t = 0 we can obtain condition (d,) analogous to (d,), by replacing
in (ii) the domain k = o(k,) by k = k,(t) + o(k,). Then (d,) will be a sufficient condi-
tion for the existence of DX(f).

Remark 6. Because of the analogy with random functions of intervals we have
restricted ourselves to derivatives from tke right only, but it is not essential.
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5. HOMOGENEOUS CASE

Sequences (1.1) where all random variables X, in each row (n being fixed) follow

the same probability law, form an interesting special case. Since the F,(x) are inde-
pendent of n, conditions for convergence, continuity, etc. are very simplified. As we
see from Kimme’s Theorem 6 ([1], p. 218), such a sequence (1.1) is convergent if
there exists a single random variable X = X(1) such that
(s.1) tim [, (9] = 0(6) = 9(1;).
It is evident that in this case (5.1) and (4.2) are equivalent so that if (1.1) is convergent,
it is also differentiable (in the above sense) for any ¢, 0 < ¢ < 1, all derivatives DX()
having the same distribution function (the same as X(1)). The corresponding functions
(1) and G(t, y) are of the form y(t) = ty, G(t, y) = t G(p).

6. A~-CONVERGENCE

In this short final paragraph we shall only indicate briefly some directions in which
the convergence scheme considered can be generalized.

First, it can be seen that the choice of the functions k,(z) that mediate the passage
from random variables X, to random functions X,(¢) in (1.3), is in a great measure
arbitrary. If we use (1.2), it means that all random variables X, k = 1, 2, ..., k, play
equal roles in the definition of X,(t), but this need not be so. Thus we can consider
more generally a system 1 of real functions A,(t), n = 1,2, ..., 0 £ ¢t < 1, having the
following properties:

(@) they only take positive entire values,

® they are non-decreasing,

() (0) =0, A1) =k, forall n.

In place of (1.5) we now put

61) Xept)= S Xy, 0SHSHSI
k=An(t1)+1

with the obvious convention for the case of 4,(t;) = A,(t,)-

Given a sequence (1.1) we shall then say that it is convergent if the sums (6.1) con-
verge in the usual sense, i.e. in distribution. The question of whether (1.1) is conver-
gent and whether its limit X(¢) has some special property (as for instance continuity)
depends now not only on the properties of the sequence (1.1) itself but also on the
properties of the system 4 used.

One has no difficulties to see how Kimme’s condition (K) has to be transformed in
order to correspond to this new kind of convergence: it suffices to write 4,(t) in place of
k,(t) everywhere in (Ko), (KB) and (Ky). Thus we can transfer Kimme’s Theorem 4 to
the case of A-convergence for any fixed 4.
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But a question of much greater interest is that of the conditions under which
J-convergence follows from the usual convergence. In the general case, the situation is
rather complicated. An important part is played here by the limit
(6.2) A(Y) = lim A,(¢)/k, = lim 4,(t)/2,(1) ,

n—>o0 n—w

(provided it does exist). We have, for example, the following theorem.

Theorem 6. Let (1.1) be a convergent sequence satisfying condition (cc). Let i be
any system with properties (o), (B), and (y) and such that the limit A(t) given by (6.2)
exists, is continuous and increasing in {0, 1). Then (1.1) is A-convergent (to a A-limit,
XM(), say) and for the distribution functions F®(t; x) = P{X™(t) £ x} we have

(6.3) FA(t; x) = F(A(t);x), 0<t=<1.
Proof. We write as usual
An(2) kn(A(2))
(6.4) XP0) =3 X, X(AD) = Y Xu-
k=1 k=1

Let ¢ > 0 be given. From condition (cc) we see that there exist an N; = N,(g) and an
n > 0 such that for n > N, r < nk, we have
Jj+r

(6.5 P{l ¥ Xul2e}<e¢

k=j+1
forallj,0 < j < k, — r. For this 7 we can select a number N, > Osuchthatn > N,
implies 7k, > 2 and another number N3 > 0 such that |1,(f) — k, A(?)| < 3nforallt,
0 <t =<1and n> N;. This can be done because it follows from the continuity of
A(?) that the convergence in (6.2) is uniform in ¢ in the interval <0, 1). For n >
> max (N, N,, N3) and for all e <0, 1> we have

Mn(t) - kn(A(t))l = Mn(t) vt kn A(t) + kn A(t) s kn(A(t))l =

= 1240 = kn A@)] + ky A() = k(AD)] < Fnkn + 1 < 71k, -
From (6.5) we now obtain

P{XO() - X (4| z e} < &

for n > max (N4, N,, N3) = Ny(e). But ¢ is arbitrary and (1.1) is convergent, hence
(1.1) is A-convergent and (6.3) holds, q. e. d. The continuity of the random function
X*(¢) then follows from the continuity of A(f) and of X(¢) (which is implied by our
Theorem 2).

Remark 7. If in Theorem 6 condition (cc) is replaced by (ac) and if we suppose that
A(?) is absolutely continuous, then (1.1) will be A-convergent (for (ac)=> (cc)), its
limit X®(¢) being absolutely continuous. »

Remark 8. As well as the continuity properties of X*)(¢), the existence of deriva-
tives also depends on corresponding properties of the function A(f): if (1.1) is 4-

convergent, DX®(0) will exist if (d,) holds and if 4'(0+) < oo exists. Sufficient con-
ditions for non-zero t can be obtained analogously.
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Remark 9. Relations (6.3) and (6.4) also give corresponding relations for y and G:

(6.6) Y2 = 2(4@1), GO, y) = 6(A®1), y) -

In the special case where the F(x) do not depend on k (see § 5), if the sequence (1.1)
is convergent, it is also A-convergent for any system 4 such that A(t) exists and is
continuous; the limit random function X®(¢) is then continuous, too. For y and G we
then have

(6.7) 7P =v 4@, 6P y) = A1) G).

Remark 10. In the extensive paper [9] J.V. ProcHOROV has also considered pro-
blems of convergence of random variables to limit random functions on <0, 1) (see
[9], §3.2, p. 214 ssq). But Prochorov uses another type of convergence which is
stronger that the convergence we have used here. Our convergence corresponds to the
convergence in the sense of condition ) of Prochorov’s theorem 3.2 (see [9], p. 218).
Our condition (cc) follows from his conditions (3.15) and (3.16) (see [9], p. 215) if we
put in (3.15) a & such that C(4, §) < A; this can always be done as we see. by (3.16).
Prochorov considers from the beginning a convergence corresponding to our A-
convergence (and therefore more general than that used by Kimme). Prochorov’s
condition (3.13) — which, interpreted literally, is an obvious consequence of his choice
of the numbers ¢, — is evidently meant to express a postulate corresponding to our
assumption that A(?) is increasing.

Another possibility of generalization of the convergence scheme consists in allowing
infinite k,. We could then study convergence to a random function defined on <0, o)
or a modified A-convergence with

) 4(0) =0, 4,(1)=c0,
in place of (y).
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Vytah
O KONVERGENCI POSLOUPNOSTI STOCHASTICKYCH PROCESU
FRANTISEK ZITEK, Praha

BudiZ dana posloupnost (1.1) ndhodnych promé&nnych X,,; pfi pevném n jsou X,
stochasticky nezévislé. Vztahem (1.3) je pak definovana posloupnost ndhodnych
funkei X,(¢), 0 < t < 1, s nezavislymi p¥irtstky. V praci [1] studoval E. G. Kimme
otézky konvergence (v distribuci) posloupnosti tohoto typu k limitnim néhodnym
funkcim X(f) s nezavislymi p¥irdstky.

Jak bylo ukézano jiZ v [7], analogie mezi teorii limitnich zkon# pro souéty neza-
vislych nahodnych veli&in a teorii ndhodnych funkci intervalu (viz [4], [5], [6]) dovo-
luje pfenaseti nekteré vysledky z jedné teorie do druhé. Toho je zde vyuZito k formu-
laci podminek, kladenych na posloupnost (1.1), postadujicich k tomu, aby limitni
ndhodna funkce X(r) byla spojitd nebo absolutng spojita, anebo aby méla derivaci.
Nakonec je uvaZovano i jisté zobecnéni daného konvergenéniho schématu.

PesromMme

O CXOJIIMOCTH ITOCJIEJABOTEJIBHOCTEN CIIVUAWHBIX
ITPOITECCOB

P®PAHTHUIIEK 3UT3K (FrantiSek Zitek), IIpara

Ilycte mama mocmenoBaTenbHOCTH (1.1) cirydaiiEbiX BeywauH X,;; OpH (QHKCHpO-
BaEHOM n Bce X, CTOXacTHyeck:m HesaBmcuMbl. Coormomenme (1.3) ompenmenser
TOIr/Ia HOCIENOBATEBHOCTS CIyIaiBbIX ¢yHKmmil X, (1), 0 < ¢t < 1, ¢ He3aBECHMBIMHA
mpupamernsMA. B paGore [1] msysan Kumme cxomemocts (DO pacmpefielIeHHIO)
IOCTIEOBATEBHOCTE! 3TOT0 THOA K HpefebHBIM CiydaiEbiM (ysxmusM X(f)
C He3aBHCHUMbIME IPUPAIIECHAIMH.

Kak moxasaHo yxe B [ 7] apanorus Mexmy TeopHel npeebEbIX 3aKOHOB IS CYMM
HE3aBHCHMBIX CJIy4JaiHBIX BEJIMIHH X TeOpHeH CIydaHbIx QyHKnuii HHTEpBaia (CM.
[4], [5], [6]) mo3BossteT meperecTH HEKOTOPBIE PE3YIBTATEL H3 OINHOK TEOPHH B IpY-
ryro. B macrosmie#l craThe 3TO OGCTOSTENBCTBO HCHONBL3YeTCSA OIS TOrO, YTOOBI
yKa3aTh YCIOBHS, HaJaraeMele Ha NOCIENOBATENBHOCT (1.1), IpH BHIIOJIHEHHH
KOTODBIX IpeziebHas GyEkuus X(f) GyaeT HenpepHIBHOM, A a6COMIOTHO HepepHB-
HOH, mm mudbepernmupyeMoii. HakoHen paccMOTpuBaeTcs eme HeKoTopoe 0606-
IICHNWE AAHHOH CXEMBI.
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