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DANDELIN’S FIGURE IN n-SPACE

SaHIB RAM MANDAN, Kharagpur (India)
(Received November 26, 1963)

Some figures known from the projective geometry are generalized in an
n-space.

Abstract. A pair of perspective simplexes S, S’ in a complex projective space of n
dimensions, or briefly in an n-space, are always polar reciprocal of each other with
respect to a quadric Q (cf. [1], pp. 218, 251; [14]). A particular case of interest arises
when n vertices of either simplex lie in their corresponding n primes which are there-
fore the tangent hyperplanes of Q there, such that the n(n — 1) joins of the non-cor-
responding vertices of the (n + 1)-th pair of corresponding prime faces of S, S’ (being
a pair of non-tangent hyperplanes of Q) are n(n — 1) generators of Q. We can initiate
the whole figure from these n(n — 1) generators too. For n = 3, it becomes Dande-
lin’s figure [2; 7; 8] of six generators of Q and hence we name it the Dandelin’s figure
of n(n — 1) lines in an n-space. It is also indicated here as a consequence how Pas-
cal’s theorem for a conic and its dual Brianchon’s theorem have an analogue in an
n-space [4; 14]. '

1. PERSPECTIVE (» — 1)-SIMPLEXES

We are already familiar with the method of symbols ([2], pp. 6—44; [3], pp. 115 to
160; [6]; [9—11]; [13]) for points. We use this method here to prove first the follow-
ing theorem:

Theorem 1. Let a, a’ be a pair of (n — 1)-dimensional simplexes, or briefly of
(n — 1)-simplexes,') in an n-space, perspective from a point O, A be the point com-
mon to the n hyperplanes determined by the n (n — 2)-spaces of a joined respectively
to the n vertices of a’ opposite their corresponding n (n — 2)-spaces, and A’ common
to the n hyperplanes determined similarly by the n (n — 2)-spaces of a’ joined
respectively to the n vertices of a opposite their corresponding n (n — 2)-spaces.
A and A’ are then collinear with O (cf. [18], [19]).

1) B. SEGRE calls it an *“n-simplex” in his “Lectures on Modern Geometry’’. Roma 1961.
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Proof. Let 4, (i =1, ..., n) be the n vertices of the (n — 1)-simplex a and 4; of a’,
a; be the (n — 2)-space of a opposite a vertex 4; and a; of a’ opposite 4; such that
every pair of corresponding vertices A; and A4; of a, a’ are collinear with O and there-
fore a; corresponds to a;; the symbols of the n pairs of points 4;, 4; and O are then
related as

let U, U’ be the points represented by

(ii) U=A,+...+4,, U=A4+ ..+ 4,.
Then
(iif) M, =U-A4;,, M;=U" - 4

are points lying respectively in the (n — 2)-space§ a; and a; such that the two pairs of
points U, U’ and M;, M} are each collinear with O and are related as

(iv) U-U=n.0, Mj—M,=(n-1).0.

Now A is common to the n hyperplanes A;a; and therefore let the n joins AA; meet
the n (n — 2)-spaces a; respectively in the n points M,. Or, the n joins A;M; concur
at A. Thus, the symbol for 4 may be taken as

(v) A=A;+M; =0+ U,

and similarly for 4" as

(vi) A =A4+Mj=U-0.
Hence

(vii) A-A=U-U-2.0=(n-2).0.

Thus 4, A’ are collinear with O, proving the proposition.

2. PERSPECTIVE SIMPLEXES

S = Aa, S’ = A’a’ (§ 1) now form a pair of simplexes, in the n-space, perspective
from O and therefore are polar reciprocal of each other with respect to a quadric Q
such that the vertex A4 of S is the pole of the hyperplane p’ of the (n — 1)-simplex a’,
the vertex A’ of S’ is the pole of the hyperplane p of a, the n vertices 4; of S are respec-
tively the poles of the n primes A’a; of S’ and the n vertices A; of S’ are respectlvely
the poles of the n primes Aa; of S with respect to Q. -

Again, by definition (Theorem 1), A is common to the n hyperplanes Aja, and there-
fore every hyperplane Aa; of the simplex S contains respectively the vertex 4; of S'.
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Now Aa; is the polar hyperplane of A; with respect to the quadric Q and is therefore
its tangent hyperplane there.

The n hyperplanes A’a; of the simplex S’ are similarly related with the n vertices 4;
of S: every hyperplane A’a; is a tangent prime of Q at A; as desired.

We may observe further that the join of a vertex A4; of the (n — 1)-simplex a to a
non-corresponding vertex A4; of a’ lies, obviously, in the two hyperplanes A'a}, Aa;
respectively tangent to Q at 4; and 4 (j = 1,...,n; i % j). Thus the line 4,4}
touches Q at its two distinct points 4; and A4}. Such is the case only when it is a gene-
rator of Q. Thus, the n(n — 1) joins A;A) or AjA; are n(n — 1) generators of Q.
Hence, we have the following theorem:

Theorem 2. Let a, a’ be a pair of perspective (n — 1)-simplexes in an n-space and
A, A’ be the pair of points as constructed in Theorem 1. Then the pair of perspective
simplexes S = Aa, S' = A’a’ are polar reciprocal of each other with respect to a
quadric Q, with the n(n — 1) joins of the non-corresponding vertices of a, a’ as its
n(n — 1) generators; furthermore, n vertices of S, namely those of a, lie respectively
in their corresponding n primes of S’ concurrent at A’, and n vertices of S’, namely
those of a’, also lie respectively in their corresponding n primes of S concurrent
at A.

3. THE QUADRIC Q

3.1. A quadric Q in an n-space is determined by n(n + 3)/2 linearly independent
conditions or can be made to pass through an equal number of independent points
[14; 15]. .

Now every pair of lines 4,4;, Aj4; meet in the point O (§ 1), so that every four
points 4;, A;, A}, A} are coplanar. Therefore, every pair of joins 4;4], A;A; meet in
a point M", and 4,4, A}A} in L, say. Obviously, there are in all n(n — 1)/2 points
like M*/ and the same number of points like L".

Thus, we can construct a unique quadric Q to pass through the 2n vertices 4;, A;
of the pair of given (n — 1)-simplexes a, a’ perspective from O and the n(n — 1)/2
points M*". The three points 4;, A}, M" of every line A;4] lic on Q and therefore this
line is a generator of Q. Hence, the polar hyperplane of every vertex A; of a with
respect to Q is its tangent prime there, determined by its n — 1 generators 4;A4;
through 4;; and that of every vertex A; of a’ is its tangent prime there determined
by its n — 1 generators 4j4; through 4;.

3.2. Let A7 be the n points, conjugate to O for Q, on the n lines 4;4}, concurrent
at O, such that (0A4,47A}) = —1, or following the notations of H. S. M. CoxETEr [5],
H(0A}, A4). 1t is then apparent from the harmonic property of the quadrangle
A,A}A}A; that every pair of points A4;, A; lie on the join LM such that H(A4[A],
L'mY).
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Thus, the n points A form an (n — 1)-simplex a” in the polar hyperplane p” of O
for Q such that the n(n — 1)/2 pairs of points L'/, M"/ on the n(n — 1)/2 edges of a”
form the n(n — 1)/2 pairs of opposite vertices of an (n — 1)-dimensional S-configura-
tion [12] with a” as its diagonal simplex; the n(n — 1)/2 points L” lie in one of the
2"~ space (n — 2)-spaces, say p; wWhich is obviously the (n — 2)-space of perspectivity
of the pair of the given (n — 1)-simplexes a, a’ perspective from O.

Thus the three hyperplanes p, p’, p” have p, as the common (n — 2)-space of per-
spectivity of the three (n — 1)-simplexes a, a’, a” lying therein respectively, and per-
spective from the same center O.

Hence, if A, A’ be the respective poles of p’, p with respect to Q, they are collinear
with O as the pole of p” for Q, and this completes the construction of the pair of
simplexes S = Aa, S’ = A'a’ perspective from O and polar reciprocal of each other
with respect to Q as desired. Hence we have the following theorem:

Theorem 3. If a, a’ be a pair of (n - 1)—simplexes, in an n-space, perspective from
a point O, the n(n — 1) joins of the non-corresponding vertices of a, a’ generate a
quadric Q. If A', A be the respective poles of the pair of the hyperplanes p, p’ of
a, a’ with respect to Q, the pair of simplexes S = Aa, S’ = A’a’ are perspective to
each other from O and polar reciprocal of each other with respect to Q as in the
Theorem 2 above.

Definition. For n = 3, this gives Dandelin’s figure ([2], p. 45) of six generators.
Hence we define its analogue or extension here as Dandelin’s figure of n(n — 1)
generators in an n-space.

3.3. Every pair of corresponding vertices 4;, 4; of a, a’ are obviously coplanar with
the corresponding pair of vertices A, A’ of S, S’. Therefore, the n pairs of correspond-
ing edges AA4;, A'A’ of S, S’ meet respectively in n points L, say, as the n poles of the n
hyperplanes Oa; or Oa; with respect to Q. For AA4;, A'A; are seen to be the polar
lines, for Q, of the pair of the corresponding (n — 2)-spaces aj, a; respectively;
these, being perspective to each other from O, lie in the same hyperplane through O.
Hence, L all lie in the polar hyperplane p” of O for Q (3.2).

Thus p” coincides with the prime of perspectivity of S, S’ such that the n(n + 1)/2
points L and L" of intersection of the n(n + 1)/2 pairs of the corresponding edges of
S, 8’ lie therein by threes on (n + 1) n(n — 1)/6 lines [16]. For example, every three
points L/, IJ*, I¥ are collinear, and same is the case with every three points L}, I, L}/,

In fact, O, 4, A', A;, A, L', LY form a figure of (n + 2) (n + 3)/2 points lying by
threes on (n + 1)(n + 2)(n + 3)/6 lines and by (" '; 1) s in (n + 2)(n + 3)/2

hyperplanes such that n + 1 lines and n(n + 1)/2 hyperplanes pass through each
point. The whole figure is self-reciprocal for the quadric Q, and the n + 1 vertices
of either simplex, S or S’, make a self-conjugate (n + 2) ad of points with O for Q
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such that the line joining any two contains the pole of the hyperplane determined by
the remaining n points for Q (cf. [2], pp. 34—41, Exs. 5—6; [3], pp. 148 —149, Exs.
21-22;9).

3.4. Following H. F. BAKER ([2], p.46), it can be proved that the equation of the
quadric Q, referred to the simplex S replacing 4 by A,, is of the form

(viii) @=n)(xg—xt— .= x2) = (xo — Xg — ... —x,)%.
This is the particular case of the equation
(ix) (1 + bo+ .. + by)(boxi + ... + bx2) = (boXo + ... + byx,)?

for b =1, by =...=b,= —1.

" The equation (ix) represents the quadric for which S reciprocates into a simplex
whose vertex, referred to S, corresponding to the vertex A; of S has n + 1 coordinates
as

x;=1+1/b;, x;=1 (i,j=0,1,...,n; 1 #j).

4. PASCAL’S THEOREM

Let us take a section of Dandelin’s figure in an n-space by a hyperplane A such that
it meets the n concurrent lines OA, in n points B; which determine an (n — 1)-simplex
b, and the n(n — 1) generators 4,4 of the quadric Q in n(n — 1) points C which then
lie on the (n — 2)-quadric section g of Q by h.

Obviously every pair of points C/, C} lie on the edge B;B; of b. For, B;B; is the sec-
tion of the plane 0A4;4; which contains the pair of generators 4;4}, AiA4; of Q.

The section of the hyperplane A4,a; is an (n — 2)-space c; (say) determined by the
n — 1 points CJ on the n — 1 concurrent edges B;B ; of b through B;, and that of Oa;
is the (n — 2)-space b; of b opposite its vertex B;. Therefore the (n — 3)-space section
d; of aj is common to the two (n — 2)-spaces b;, c¢;. All the n (n — 3)-spaces d; then
lie in an (n — 2)-space section d of the hyperplane p’ of the (n — 1)-simplex a’ (§ 2)
which contains all the n (n — 2)-spaces a;.

Hence, the n (n — 2)-spaces c; form an (n — 1)-simplex ¢ perspective to b with d as
the (n — 2)-space of perspectivity of the two (n — 1)-simplexes b and ¢ such that every
point C} occurs once only, and all the n (n — 1) such points are accounted for. Thus
we have the following theorem:

Theorem 4. If b, ¢ are a pair of perspective simplexes in an (n — 1)-space, let the
n — 1 points of intersection of the n — 1 concurrent edges of either simplex, say b,
through every vertex B, of b with the (n — 2)-space c; of the other simplex, namely c,
corresponding to the (n — 2)-space b; of b opposite B; be marked. The n(n — 1) such
marked points, lying in pairs on the n(n — 1)/2 edges of b, lie on a quadric q.
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Remark. Conversely, if the n(n — 1) points of intersection of a quadric q with
the n(n — 1)/2 edges of a simplex b in an (n — 1)-space be distributed by (n — 1)-s
in n (n — 2)-spaces c; such that the n — 1 points of every c, lie on the n — 1 concur-
rent edges of b through a vertex B; of b, one on each edge (such a distribution of the
n(n— 1) points is obviously always possible in 2" ~1)/2 ways, for there are two choices
for either of the two points of intersection on every edge of b independent of one
another), the behaviour of the n space (n — 2)-spaces c; is not unique.

They may form a simplex ¢ which need not necessarily [14] be perspective to b in
the sense of Theorem 4 unless n = 3 in which case it becomes the well known Pascal’s
theorem for a conic. They may not form a simplex at all, but may be concurrent or
even coaxial.

Hence we may say that Theorem 4 is a partial analogue in an (n — 1)-space of
Pascal’s theorem for a conic.

For n = 4, N_A. Courr [4] has discussed in detail the different cases in regard to

the behaviour of the twelve points of intersection of a quadric with the six edges of
a tetrahedron (cf. [2], pp. 53—54, Ex. 15).

For higher values of n, the discussion of the several cases arising thereform forms
the subject matter of another paper [17].

It is now not difficult to formulate the partial analogue in an n-space of Pascal’s
theorem for a conic and thus we have the following corollary:

Corollary. If the n + 1 primes b; of a simplex b be respectively parallel to the
n + 1 primes c; of another simplex c in an n-space, the n(n + 1) points of inter-
section of the edges of either simplex with the primes of the other lie on a quadric.

For, every b, is parallel to the n(n — 1)/2 edges of ¢ lying in ¢; and meets only the
other n edges of ¢ concurrent at its vertex C; opposite c¢;, and similarly every c; meets
only the n concurrent edges of b through its vertex B; opposite b.

5. BRIANCHON’S THEOREM

We are now in a position to state the partial analogue in an (n — 1)-space of
Brianchon’s theorem for a conic as the dual of the Theorem 4. That in an n-space will
be the following theorem:

Theorem 5. If b, ¢ are a pair of perspective simplexes in an n-space, let the n
hyperplanes joining the coprimal n (n — 2)-spaces of either simplex, say b, lying
in every prime b; of b to thevertex C; of the other simplex, namely ¢, corresponding
to the vertex B; of b opposite b; be constructed. These n(n + 1) hyperplanes, passing
in pairs through the n(n + 1)/2 (n — 2)-spaces of b, envelop a quadric.

Remark. Conversely, if the n(n + 1) tangent hyperplanes of quadric through the
n(n + 1)/2 (n — 2)-spaces of a simplex b in an n-space be distributed into n + 1
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groups of n each such that the n hyperplanes of each group pass through the n copri-
mal (n — 2)-spaces of b lying in a prime b, of b, one through each (n — 2)-space, and
concur at a point C,; (such a distribution of the n(n + 1) hyperplanes is obviously
always possible in 2" =12 ways, for there are two choices for either of the two hyper-
planes through every (n — 2)-space of b independent of one another), the behaviour of
the n + 1 points C, is not unique. They may form a simplex ¢ which need not neces-
sarily be in [14] perspective to b in the sense of the Theorem 5 unless n = 2 in which
case it becomes the well known Brianchon’s theorem for a conic. They may not form
a simplex at all, but may be coprimal or lie even in a lower space.

For n = 3, N. A. Court [4] has discussed in detail the different cases in regard to
the behaviour of the twelve tangent planes of a quadric through the six edges of a tetra-
hedron (cf. [2], p. 54).

Thanks are due to Professor B. R. SETH for his generous, kind and constant en-
couragement during the preparation of this paper.
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Vytah
DANDELINUV UTVAR V n-ROZMERNEM PROSTORU

SAHIB RAM MANDAN, Kharagpur (India)

V ¢ldnku se zobeciiuji nékteré utvary zndmé z trojrozmérné a dvojrozmérné pro-
jektivni geometrie na n-rozmérny pfipad. Jednd se jednak o zobecnéni tzv. Dandeli-

novy skupiny $esti vytvorfujicich pfimek kvadriky, jednak o &dste¢né zobecnéni Pasca-
lovy a Brianchonovy véty.

Pe3lomMe

OUT'YPA JAHAEJIMHA B n-MEPHOM ITPOCTPAHCTBE

CAI'lb PAM MAH/AH (Sahib Ram Mandan), Xaparnyp (Mungus)

B craThe 060611a10TC HEKOTOPBIE GUTypHI, H3BECTHBIE M3 IPOEKTUBHOM reome-
TPHM TPEXMEPHOrO MPOCTPAHCTBA M ILUIOCKOCTH, HA N-MEPHBIA ciiyyail. Bo-mepBhix,
o6obiaercs T. Ha3. rpymmna JlaHAeNIMHA IIECTH NPOHM3BOAAIIMX JIPAMBIX ITOBEpX-

HOCTH BTOPOTrO IOPSIKAa, BO-BTOPHIX, YaCTHYHO 000OuIaroTcsa Teopemsl Ilackans
1 bpuanmona.
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