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Časopis pro pěstování matematiky, roč. 90 (!965), Praha 

DANDELIN'S FIGURE IN n-SPACE 

SAHIB RAM MANDAN, Kharagpur (India) 
(Received November 26, 1963) 

Some figures known from the projective geometry are generalized in an 
w-space. 

Abstract. A pair of perspective simplexes 5, S' in a complex projective space of n 
dimensions, or briefly in an n-space, are always polar reciprocal of each other with 
respect to a quadric Q (cf. [1], pp. 218, 251; [14]). A particular case of interest arises 
when n vertices of either simplex lie in their corresponding n primes which are there­
fore the tangent hyperplanes of Q there, such that the n(n — 1) joins of the non-cor­
responding vertices of the (n + l)-th pair of corresponding prime faces of S, Sf (being 
a pair of non-tangent hyperplanes of Q) are n(n — 1) generators of Q. We can initiate 
the whole figure from these n(n — 1) generators too. For n = 3, it becomes Dande-
lin's figure [2; 7; 8] of six generators of Q and hence we name it the Dandelin's figure 
of n(n — 1) lines in an n-space. It is also indicated here as a consequence how Pas­
cal's theorem for a conic and its dual Brianchon's theorem have an analogue in an 
n-space [4; 14]. 

1. PERSPECTIVE (n - 1)-SIMPLEXES 

We are already familiar with the method of symbols ([2], pp. 6-44; [3], pp. 115 to 
160; [6]; [9 — 11]; [13]) for points. We use this method here to prove first the follow­
ing theorem: 

Theorem 1. Let a, a' be a pair of (n — l)-dimensional simplexes, or briefly of 
(n — ty-simplexes,1) in an n-space, perspective from a point Ot A be the point com­
mon to the n hyperplanes determined by the n (n — 2)-spaces of a joined respectively 
to the n vertices of a' opposite their corresponding n(n — 2)-spaces, and A' common 
to the n hyperplanes determined similarly by the n (n — 2)-spaces of a' joined 
respectively to the n vertices of a opposite their corresponding n (n — 2)-spaces. 
A and Af are then collinear with O (cf. [18], [19]). 

1 ) B. SEORE calls it an "/i-simplex" in his "Lectures on Modern Geometry". Roma 1961. 
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Proof. Let At (i = 1,..., n) be the n vertices of the (n — l)-simplex a and A\ of a', 
ai be the (n — 2)-space of a opposite a vertex At and a; of a' opposite A\ such that 
every pair of corresponding vertices At and A; of a, a' are collinear with O and there­
fore a{ corresponds to a\; the symbols of the n pairs of points Ah A\ and O are then 
related as 

0) A\ - At = O ; 

let 17, U' be the points represented by 

(H) U = At + ... + A„, U' = ^ i + ... + A;. 

Then 

(iii) Mi = U - At, M; = U' - A\ 

are points lying respectively in the (n — 2)-spaces at and a\ such that the two pairs of 
points U, Uf and Mh M\ are each collinear with O and are related as 

(iv) V - U = n . O , M; - Mi = (n - 1) . O . 

Now A is common to the n hyperplanes A\at and therefore let the n joins AA\ meet 
the n (n — 2)-spaces af respectively in the n points Mf. Or, the n joins A;Mf concur 
at A. Thus, the symbol for A may be taken as 

(v) A = A; + M* = O + U, 

and similarly for A' as 

(vi) A[' = Ai + M ; = U' - O . 

Hence 

(vii) A' - A = U' - U - 2. O = (w - 2) . O . 

Thus Ai, A[' are collinear with O, proving the proposition. 

2. PERSPECTIVE SIMPLEXES 

S = Ala, S' = A'a' (§ 1) now form a pair of simplexes, in the n-space, perspective 
from O and therefore are polar reciprocal of each other with respect to a quadric Q 
such that the vertex A of S is the pole of the hyperplane p' of the (n — l)-simplex a', 
the vertex A' of S' is the pole of the hyperplane p of a, the n vertices A{ of S are respec­
tively the poles of the n primes A'a\ of S' and the n vertices A\ of S' are respectively 
the poles of the n primes Aat of S with respect to Q. 

Again, by definition (Theorem 1), A is common to the n hyperplanes A\at and there­
fore every hyperplane Aa( of the simplex S contains respectively the vertex A\ of S'. 
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Now Aat is the polar hyperplane of A\ with respect to the quadric Q and is therefore 
its tangent hyperplane there. 

The n hyperplanes A!a\ of the simplex S' are similarly related with the n vertices A t 

of S: every hyperplane A'a\ is a tangent prime of Q at At as desired. 
We may observe further that the join of a vertex At of the (n — l)-simplex a to a 

non-corresponding vertex A'j of a' lies, obviously, in the two hyperplanes A'a\, Aaf 

respectively tangent to Q at Ax and A'j (j = 1,..., n; i =t= j). Thus the line AtA
r
f 

touches Q at its two distinct points At and Aj. Such is the case only when it is a gene­
rator of Q. Thus, the n(n — 1) joins AiA'j or A\Aj are n(n — 1) generators of Q. 
Hence, we have the following theorem: 

Theorem 2. Let a, a' be a pair of perspective (n — i)-simplexes in an n-space and 
A, A' be the pair of points as constructed in Theorem 1. Then the pair of perspective 
simplexes S = Aa, S' = A'a' are polar reciprocal of each other with respect to a 
quadric Q, with the n(n — 1) joins of the non-corresponding vertices of a, a' as its 
n(n — 1) generators; furthermore, n vertices of S, namely those of a, lie respectively 
in their corresponding n primes of S' concurrent at A', and n vertices of S', namely 
those of a', also lie respectively in their corresponding n primes of S concurrent 
at A. 

3. THE QUADRIC Q 

3.1. A quadric Q in an n-space is determined by n(n + 3)/2 linearly independent 
conditions or can be made to pass through an equal number of independent points 
[14; 15]. 

Now every pair of lines AtA\9 A'JAJ meet in the point O (§ 1), so that every four 
points Ai9 Aj, A\, A'j are coplanar. Therefore, every pair of joins AxA'j, A\Aj meet in 
a point MiJ, and AtAj, A\A'j in LiJ, say. Obviously, there are in all n(n — l)/2 points 
like MiJ and the same number of points like LiJ. 

Thus, we can construct a unique quadric Q to pass through the 2n vertices At9 A\ 
of the pair of given (n — l)-simplexes a, a' perspective from O and the n(n — l)/2 
points MiJ. The three points Ai9 A'j, MiJ of every line AiA'j lie on Q and therefore this 
line is a generator of Q. Hence, the polar hyperplane of every vertex At of a with 
respect to Q is its tangent prime there, determined by its n — 1 generators AtA's 

through Ail and that of every vertex A\ of a' is its tangent prime there determined 
by its n - 1 generators A\Aj through A\. 

3.2. Let A" be the n points, conjugate to O for Q, on the n lines AtA't9 concurrent 
at 0, such that (OAiA"A\) == - 1 , or following the notations of H. S. M. COXETER [5], 
H(OA"l9 _4ii4J). It is then apparent from the harmonic property of the quadrangle 
AiA\A'jAj that every pair of points Ai9 As lie on the join LiJMiJ such that H{A"A), 
liJMiJ). 
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Thus, the n points A'[ form an (n — l)-simplex a" in the polar hyperplane p" of O 
for Q such that the n(n — l)/2 pairs of points LiJ, MiJ on the n(n — l)/2 edges of a" 
form the n(n — l)/2 pairs of opposite vertices of an (n — l)-dimensional S-configura-
tion [12] with a" as its diagonal simplex; the n(n — l)/2 points Z.M lie in one of the 
2n~~l space (n — 2)-spaces, say pt which is obviously the (n — 2)-space of perspectivity 
of the pair of the given (n — l)-simplexes a, a' perspective from O. 

Thus the three hyperplanes p, pf, p" have px as the common (n — 2)-space of per­
spectivity of the three (n — l)-simplexes a, a', a" lying therein respectively, and per­
spective from the same center O. 

Hence, if A, A' be the respective poles of p', p with respect to Q, they are collinear 
with O as the pole of p" for Q, and this completes the construction of the pair of 
simplexes S = Aa, S' = A'a' perspective from O and polar reciprocal of each other 
with respect to Q as desired. Hence we have the following theorem: 

Theorem 3. If a, a' be a pair of(n — i)-simplexes, in an n-space, perspective from 
a point O, the n(n — 1) joins of the non-corresponding vertices of a, a' generate a 
quadric Q. If A', A be the respective poles of the pair of the hyperplanes p, p' of 
a, a' with respect to Q, the pair of simplexes S = Aa, S' = A'a' are perspective to 
each other from O and polar reciprocal of each other with respect to Q as in the 
Theorem 2 above. 

Definition. For n = 3, this gives Dandelin's figure ([2], p. 45) of six generators. 
Hence we define its analogue or extension here as Dandelin's figure of n(n — 1) 
generators in an n-space. 

3.3. Every pair of corresponding vertices Ai9 A\ of a, a' are obviously coplanar with 
the corresponding pair of vertices A, A' of S, S'. Therefore, the n pairs of correspond­
ing edges AAh A'A\ of S, S' meet respectively in n points If, say, as the n poles of the n 
hyperplanes Oat or Oa\ with respect to Q. For AA{, A'A't are seen to be the polar 
lines, for Q, of the pair of the corresponding (n — 2)-spaces a\, at respectively; 
these, being perspective to each other from O, lie in the same hyperplane through O. 
Hence, I? all lie in the polar hyperplane p" of O for Q (3.2). 

Thus p" coincides with the prime of perspectivity of S, S' such that the n(n + l)/2 
points L* and LlJ of intersection of the n(n + l)/2 pairs of the corresponding edges of 
S, S' lie therein by threes on (n + 1) n(n — l)/6 lines [16]. For example, every three 
points llJ, L!k, l}% are collinear, and same is the case with every three points II, 27, llJ. 

In fact, O, A, A', At, A\, II, LlJ form a figure of (n + 2) (n + 3)/2 points lying by 

threes on (n + l ) (n + 2)(n + 3)/6 lines and by ( n + * J s in (n + 2)(n + 3)/2 

hyperplanes such that n + 1 lines and n(n + l)/2 hyperplanes pass through each 
point. The whole figure is self-reciprocal for the quadric Q, and the n + 1 vertices 
of either simplex, S or S', make a self-conjugate (n + 2) ad of points with O for Q 
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such that the line joining any two contains the pole of the hyperplane determined by 
the remaining n points for Q (cf. [2], pp. 34-41, Exs. 5-6 ; [3], pp. 148-149, Exs. 
21-22; 9). 

3.4. Following H. F. BAKER ([2], p. 46), it can be proved that the equation of the 
quadric Q, referred to the simplex S replacing A by A0, is of the form 

(viii) (2 - n)(x2
0 - x2 - ... - x2) = (x0 - xx - ... - x,,)2 . 

This is the particular case of the equation 

(ix) (1 + b0 + ... + bn)(b0x
2

0 + ... + bnx
2) = (b0x0 + ... + b^)2 

for b0 = 1, bi = ... = bn = - 1 . 
' The equation (ix) represents the quadric for which S reciprocates into a simplex 

whose vertex, referred to S, corresponding to the vertex At of S has n + 1 coordinates 
as 

Xi = 1 + 1 /^ , x,. = l (i,j = 0, 1,..., n; 1 + j ) . 

4. PASCAL'S THEOREM 

Let us take a section of Dandelin's figure in an n-space by a hyperplane h such that 
it meets the n concurrent lines OAt in n points Bt which determine an (n — l)-simplex 
b, and the n(n — 1) generators AfA} of the quadric Q in n(n — 1) points C{ which then 
lie on the (n — 2)-quadric section q of Q by h. 

Obviously every pair of points C{, C) lie on the edge BtBj of b. For, BtBj is the sec­
tion of the plane OAiAj which contains the pair of generators AtA'p A'iAj of Q. 

The section of the hyperplane A^ is an (n — 2)-space ct (say) determined by the 
n — 1 points C{ on the n — 1 concurrent edges BtBj of b through Bh and that of Oa\ 
is the (n — 2)-space bt of b opposite its vertex Bt. Therefore the (n — 3)-space section 
di of a'i is common to the two (n — 2)-spaces bh cf. All the n (n — 3)-spaces dj then 
lie in an (n — 2)-space section d of the hyperplane p' of the (n — l)-simplex a' (§ 2) 
which contains all the n (n — 2)-spaces aj. 

Hence, the n (n — 2)-spaces cf form an (n — l)-simplex c perspective to b with d as 
the (n — 2)-space of perspectivity of the two (n — l)-simplexes b and c such that every 
point C{ occurs once only, and all the n (n — 1) such points are accounted for. Thus 
we have the following theorem: 

Theorem 4.1/ b, c are a pair of perspective simplexes in an (n — i)-space, let the 
n — 1 points of intersection of the n — 1 concurrent edges of either simplex, say b, 
through every vertex Bt of b with the (n — 2)-space ct of the other simplex, namely cy 

corresponding to the (n — 2)-space bt of b opposite Bt be marked. The n(n — 1) such 
marked points, lying in pairs on the n(n — l)/2 edges of b, lie on a quadric q. 
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Remark. Conversely, if the n(n - 1) points of intersection of aquadric q with 
the n(n - l)/2 edges of a simplex b in an (n - \)-space be distributed by (n - l)-s 
in n(n ~ 2)-spaces ct such that the n - 1 points of every ct lie on then - 1 concur­
rent edges of b through a vertex Bt of b, one on each edge (such a distribution of the 
n(n - 1) points is obviously always possible in 2w(w""1)/2

 ways, for there are two choices 
for either of the two points of intersection on every edge of b independent of one 
another), the behaviour of the n space (n - 2)-sPaccs cf is not unique. 

They may form a simplex c which need not necessarily [14] be perspective to b in 
the sense of Theorem 4 unless n = 3 in which case it becomes the well known Pascal's 
theorem for a conic. They may not form a simplex at all, but may be concurrent or 
even coaxial. 

Hence we may say that Theorem 4 is a partial analogue in an (n — \)-space of 
PascaVs theorem for a conic. 

For n = 4, N! A. COURT [4] has discussed in detail the different cases in regard to 
the behaviour of the twelve points of intersection of a quadric with the six edges of 
a tetrahedron (cf. [2], pp. 53 — 54, Ex. 15). 

For higher values of n, the discussion of the several cases arising thereform forms 
the subject matter of another paper [17]. 

It is now not difficult to formulate the partial analogue in an n-space of PascaVs 
theorem for a conic and thus we have the following corollary: 

Corollary. If the n + 1 primes bt of a simplex b be respectively parallel to the 
n -f- 1 primes ct of another simplex c in an n-space, the n(n -F 1) points of inter­
section of the edges of either simplex with the primes of the other lie on a quadric. 

For, every bt is parallel to the n(n — l)/2 edges of c lying in cf and meets only the 
other n edges of c concurrent at its vertex Ct opposite ch and similarly every ct meets 
only the n concurrent edges of b through its vertex Bt opposite b. 

5. BRIANCHON'S THEOREM 

We are now in a position to state the partial analogue in an (n — \)-space of 
Brianchon's theorem for a conic as the dual of the Theorem 4. That in an «-space will 
be the following theorem: 

Theorem 5. If b, c are a pair of perspective simplexes in an n-space, let the n 
hyperplanes joining the coprimal n(n — 2)-spaces of either simplex, say b, lying 
in every prime b{ of b to the vertex Ct of the other simplex, namely c, corresponding 
to the vertex Bt of b opposite bt be constructed. These n(n + l) hyperplanes, passing 
in pairs through the n(n + l)/2 (n — 2)-spaces of b, envelop a quadric. 

Remark. Conversely, if the n(n + 1) tangent hyperplanes of quadric through the 
n(n + l)/2 (n — 2)-spaces of a simplex b in an n-space be distributed into n + 1 

63 



groups of n each such that the n hyper planes of each group pass through the n copri-
mal (n — 2)spaces of b lying in a prime bt of b9 one through each (n — 2)-space, and 
concur at a point Ct (such a distribution of the n(n + 1) hyperplanes is obviously 
always possible in 2 n ( n" 1 ) / 2 ways, for there are two choices for either of the two hyper­
planes through every (n — 2)-space of b independent of one another), the behaviour of 
the n + 1 points C( is not unique. They may form a simplex c which need not neces­
sarily be in [14] perspective to b in the sense of the Theorem 5 unless n = 2 in which 
case it becomes the well known Brianchon's theorem for a conic. They may not form 
a simplex at all, but may be coprimal or lie even in a lower space. 

For n = 3, N. A. COURT [4] has discussed in detail the different cases in regard to 
the behaviour of the twelve tangent planes of a quadric through the six edges of a tetra­
hedron (cf. [2], p. 54). 

Thanks are due to Professor B. R. SETH for his generous, kind and constant en­
couragement during the preparation of this paper. 
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Výtah 

DANDELINŮV ÚTVAR V n-ROZMĚRNÉM PROSTORU 

SAHIB RAM MANDAN, Kharagpur (India) 

V článku se zobecňují některé útvary známé z trojrozměrné a dvojrozměrné pro­
jektivní geometrie na n-rozměrný případ. Jedná se jednak o zobecnění tzv. Dandeli-
novy skupiny šesti vytvořujících přímek kvadriky, jednak o částečné zobecnění Pasca­
lovy a Brianchonovy věty. 

Резюме 

ФИГУРА ДАНДЕЛИНА В w-MEPHOM ПРОСТРАНСТВЕ 

САГИБ РАМ МАНДАН (Sahib Ram Mandan), Харагпур (Индия) 

В статье обобщаются некоторые фигуры, известные из проективной геоме­
трии трехмерного пространства и плоскости, на n-мерный случай. Во-первых, 
обобщается т. наз. группа Данделина шести производящих прямых поверх­
ности второго порядка, во-вторых, частично обобщаются теоремы Паскаля 
и Брианшона. 
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