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časopis pro pěstování matematiky, roč. 93 (1968). Praha 

GEODESIC CURVATURE OF CURVES ON SURFACES 
IN EQUIAFFINE SPACE 

BRUNO BUDINSKY, Praha 

(Received July 1, 1967) 

In this paper we shall investigate the fundamental properties of the geodesic cur­
vature of curves on a surface in the equiaffine space and on the basis of these proper­
ties we shall show a geometric interpretation of the Pick invariant. We shall make use 
of the notation and terminology of [4]. 

In the real equiaffine 3-space let there be given a surface of the third class with no 
singular points by its parametric description 

(1) r = r(u1
!u

2), ry, i . 2 ]eo . 
On the surface (1) let a curve of the third class be described by the parametric equa­
tions 
(2) ua = ua(t), te(tl9t2), 

also with no singularities (in what follows the Latin indices assume the values 1,2). 
We suppose that no tangent of the curve (2) is an asymptotic tangent of the surface. 
We denote the affine arc of the curve (2) by s and we define it by the equation1) 

(3) s= J j ( k ^ ^ 7 j d r ' *o. te(tl9t2), 

where gab is the fundamental tensor of the surface (1) (See [4], p. 149). 
From equation (3) it follows that 

,*\ r m ví / áua áub\ 
(4) sgn [wfl(s)J s sgn lBáb——\ 

áua áuh\ áua áub 

dab~T~T as as 

For the curvature vector of the curve (2) we take the vector d2r/ds2. We shall con­
sider it placed at the corresponding point of the curve (2). If we use equation (4) and 
Gauss equations (see [4], p. 153, equations (14) and foil.) 

(5) 3/i - f j / f + guN , 

Cf. [2] Vol. П, pp. 237, 238. 
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then we find easily that 

(6) = ra + sgn [ua{sj] N. 
dsz ds ds 

1 
Let us add that 5 is the symbol for the absolute derivative in connection, by means 
of which we have written the Gauss equations (5). In equation (6) we have expressed 
the curvature vector of the curve (2) as the sum of two vectors, the first of which 
will be called the vector of geodesic curvature and the second the vector of normal 
curvature. Both vectors realize the resolution of the curvature vector into the tangent 
plane and the affine normal of the surface (1). 

Now, let us consider the set of all curves on the surface (1) which are in contact 
with a non asymptotic tangent t at a given point of the surface and satisfy the condi­
tion imposed on the curve (2). For every such curve, as it follows from relation (4), 
the equation 

^ l dua dub duc „ / 5 dwfl\ dub . 
(7) V c gab — — — + 2gab - — ) — = 0 , 

ds ds ds \ds ds / ds 
i 

holds at the point T; V is the symbol for the covariant derivative in connection, by 
means of which we have written the Gauss equations (5). By (6) we may consider (7) 
as a linear non-homogeneous equation for the geodesic curvature vector. Because the 
above mentioned set of curves on the surface (l) contains also the geodesic T, one of 
the solutions of equation (7) is the vector defined by the relation 

(8) 1 * * = * . - * - . 
ds ds ds 

Let us call the scalar \kg\ the geodesic curvature of the geodesic F at the point T 
or the geodesic curvature of the surface (1) in the direction of the tangent t. If we 
take into consideration that the general solution of a homogeneous equation cor­
responding to equation (7) is cva

9 c e (— oo, oo), where va is an arbitrarily chosen, but 
fixed, vector which defines a tangent direction at the point T on the surface (1) 
associated with the tangent t, then we may write the general solution of equation (7) 
in the form 

dua 

w « =- fca \- cva
 9 c e (— oo, oo) . 

ds 

Thus we have proved the following theorem: 

The end-points of geodesic curvature vectors drawn at the point Ton all curves 
upon the surface (l), which are in contact with their common non-asymptotic 
angent9 lie on a straight line. This straight line is in the tangent plane at the 
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h\ = 
àu" dub duc 

ds ds ds 
_ ITrt.dы'du'dн'1 

|ffлdи«dи»|3'2 

point T9 its distance from the point T is equal to the geodesic curvature of the 
surface (l) in the direction of the tangent t, and in the considered plane it defines 
a direction associated with the direction of the tangent t. 

Let us add that, in accordance with (3), the distance between two points £fl and f\a
9 

which lie in the common tangent plane of the surface (1), is defined by the number 

(9) A - V(M«" - •»*)(?-flD• 
Substituting from (8) in (7) and making use of equations (3) and (4) we obtain 

after a simple arrangement the formula for the geodesic curvature of a surface in the 
given direction 

(10) 

in which the tensor Tabc is the so-called Darboux tensor of the surface (1) (see [4], 
pp. 158 — 160, equations (24), (26) and foil.) given by the relation 

I 
Tabc = -lVflgfcc. 

The direction which satisfies the equation 

(11) Tabc dua dub duc = 0 

is called the Darboux direction. If follows from equations (10) and (11) that the 
geodesic curvature of a surface is zero exactly in those non-asymptotic directions 
which are the Darboux directions. Let us say that a point on the surface (1) is a regular 
point if, at this point, the tensor Tabc is not zero, all Darboux directions are mutually 
different and no Darboux direction is an asymptotic direction. 

In the following considerations we shall study, by means of the Darboux indicatrix, 
the dependence of the geodesic curvature at a given point on its corresponding tangent 
direction. We shall consider only the regular points of the surface. The case that the 
point of the surface is not regular, is a trivial one. We shall mention it at the end of 
this paper. 

The equation JR = (fe^"1, so far as it is valid, defines a scalar JR which we shall call 
the radius of the geodesic curvature of the geodesic F at the point Tor of the surface 
(1) in the direction of the tangent t. Let us consider the pencil of the tangents to the 
surface (1) at its given point T. Let us lay off in both directions from Tthe third root 
of the corresponding radius of geodesic curvature on each tangent of the pencil 
which lies neither in atn asymptotic direction nor in a Darboux direction of the 
surface. We call the set of points obtained in this way the Darboux indicatrix. Let us 
denote £fl the coordinates of a current point of the Darboux indicatrix. Evidently 

(12) r-iW^. 

ds 
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Thus we see easily that the Darboux indicatrix is described by the equation 

(13) IWWI = 1 . 

Let us make an additional agreement that we shall add to the Darboux indicatrix 
also the points described by equation (13) and belonging to the asymptotic directions 
of the surface. Then it follows from equation (13) that the Darboux indicatrix 
consists of two mutually symetrically conjugate cubics the common asymptotes of 
which lie in the Darboux directions of the surface. 

Let us call the principal direction such tangent direction of the surface on which 
the geodesic curvature attains its non-zero extreme value. We may easily verify that 
the function z = |k0|~1/3 attains its all non-zero extreme values exactly in those 
directions which are the principal directions. So we may describe the principal 
direction of the surface as such direction to which there corresponds a point on the 
Darboux indicatrix (we shall call it the vertex of the Darboux indicatrix) at which the 
non-zero distance from the point Tupon the surface (1) attains its extreme value. Let 
us suppose that the vertex of the Darboux indicatrix exists and lies in the direction 
that is defined by the non-zero vector vc. Let us denote the distance between the vertex 
and the point Ton the surface (1) by R. The set of all points in the tangent plane the 
distance of which from the point Tis equal to the number JR is a curve homothetic to 
the first indicatrix and is described by the equation 

(14) k*re* | = * 2 . 

The indicatrix (14) passes through the vertex of the Darboux indicatrix and it is 
geometrically evident that both indicatrices have a common tangent at the considered 
vertex which is, by (14), parallel to the vector vm, defined by the relation 

(15) vm = emvc . 2) 

From equation (13) it follows that 

(16) T ^ V - t V ^ O . 

If we introduce the notation 

c _> nr P m 
^abc ~~ Aabm°c 

(see [4], p. 163, equation (7)) we may write (16) in the form 

(17) Sabcv
avbvc ~ 0 . 

The tensor Sabc is the so-called Segre tensor. The direction which satisfies equation 

2) The numbers eab are the components of the so-called discriminant tensor. The following 
relations hold: 

e i l = s22 = 0, e12 = - e 2 1 = - V(ki-^22~G?i2)2|)-
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(17) is called the Segre direction. The Darboux directions are mutually associated 
with the Segre directions (see [4], p. 164). From this result it follows that at a regular 
point on the surface no Segre direction is an asymptotic or Darboux direction and 
that all Segre directions are mutually different. Hence we have the following theorem: 

At a regular point on the surface the principal directions are exactly those 
directions which are the Segre directions. 

From these equations it follows that, at a regular point on the surface, there 
exist either exactly one real Darboux direction and exactly one real principal direc­
tion, or exactly three real Darboux directions and three real principal directions. 

Instead of the tangent plane of the surface (1) let us take, to simplify the following 
considerations, its complex extension. In the usual way let us extend all concepts 
which we have used up to now. The distance between two complex points is calculated 
by means of equation (9), the Darboux indicatrix is the set of all complex points 
which satisfy equation (13), the principal direction is the direction which is neither 
asymptotic nor the Darboux direction and is the solution of equations (17) or (15) 
and (16) and so on. We find easily that the following theorem is true: 

At each regular point on a surface there exist exactly three principal directions. 
These directions are mutually different and they are the Segre directions. 

Now we shall state fully the meaning of the concept of the Darboux indicatrix. 
Through the point T on the surface (1) let us lay a straight line which lies in the prin­
cipal direction of the surface. Every point of this straight line which is also on the 
Darboux indicatrix is called the vertex of the Darboux indicatrix. It is evident that 
to each principal direction of the surface there correspond infinitely many vertices. 
We shall now calculate the distance between the vertices and the point of contact T 
of the tangent plane. To simplify the calculation we shall make use of asymptotic 
parameters on the surface3) and we shall introduce the following notation for the 
components of the tensor gab, g

ab, Tabc, Tab: 

9\2 '• 92i = F > g12 = g21 1 
= ғ' 

M 11 = -^ » T222 = B * 

T 2 — 
Г u "ï* 

т » - * 

We can easily verify4) that all other components of these tensors are zeros and that 
the well-known Pick invariant J, where J = —%TijkT

ijk

9 can be expressed by the 

3 ) If the points of the surface are elliptic we shall suppose that the functions (1) and (2) are 
analytic. 

4 ) See also [4], pp. 177 and 178. 
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relation 

(«) ' - £ • 
The non-zero vector (v9 w) which lies in the principal direction is, according to (15) 
and (16), the solution of the equations 

F(vv + ww) = 0, Av2v + Bw2w = 0 . 

Hence it is easy to calculate that 

(19) (v9w) = (c*/B9 c*/A)9 

where c runs through all complex numbers different from zero. By writing out the 
trigonometric forms of the numbers l/A9 IjB we may easily verify that, for AB =j= 0, 
the equations (19) define three mutually different principal directions. At a regular 
point we have always AB 4= 0. For A = B = 0 the tensor Tahc would become a zero 
tensor. For A = Q9 B 4= 0 or A #= 0, B = 0 the equation (19) defines exactly one 
direction. This direction is at the same time an asymptotic direction. Hence the 
following theorem is true: 

At a point which is not a regular point of the surface (l) either every direction 
is a Darboux direction or there exists exactly one Darboux direction which is at 
the same time an asymptotic direction5). 

Through a regular point on the surface (1) let us lay a straight line which lies in the 
principal direction of the surface and let us write its parametric equations in 
the form 

(20) Z = y(B)t9 n = l/(A)t9 teKt. 

At is follows from (13) the equation 

(21) A? + Bn3 = j , 

where j assumes all values with | j | = 1, describes a one-parametric system of cubics 
which constitute the Darboux indicatrix. Equations (20) and (21) define exactly all 
vertices of the Darboux indicatrix. An easy calculation gives this result: 

S=j(2A)-«\ r, = j(2B)-"3 , | j | = l . 

5) It follows from (13) or (19), respectively, that in this last case every cubic of the Darboux 
indicatrix degenerates into three straight lines. 

427 



If we denote the distance between the examined vertex of the Darboux indicatrix 
and the point of contact T of the tangent plane by A we may write 

(22) ^ A - V(U-C«*D - .^/(|S|)-

It follows from (22) that the distance between each vertex of the Darboux indicatrix 
and the point T is constant. Let us call the geodesic curvature of the surface in the 
principal direction the principal curvature and let us denote it by k. Evidently, 

A = | fc |~ 1 / 3 . 

Thus we may write 

k = AB 
2F: 

1/2 

From this result and (18) it follows that 

\J\ = 2k2 . 

Thus we have found the connection between the principal curvature of the surface 
and the Pick invariant of the surface. We may sum up the preceding investigations in 
this theorem: y 

At a regular point on the surface there exist three principal curvatures. These 
three curvatures assume the same value. The magnitude of the Pick invariant is 
equal to the double of the square of the principal curvature. 
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