Časopis pro pěstování matematiky

Ladislav Nebeský

On connected graphs containing exactly two points of the same degree

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 3, 305--306
Persistent URL: http://dml.cz/dmlcz/117799

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON CONNECTED GRAPHS CONTAINING EXACTLY TWO POINTS OF THE SAME DEGREE

Ladislav Nebeský, Praha

(Received September 15, 1972)

Following Behzad and Chartrand [1], we shall say that a graph G with $p \geqq 2$ points is quasiperfect if it contains exactly two points v and w of the same degree. The points v and w will be called the exceptional points of G. (For basic notions of graph theory, see Harary [2].)

By D_{2} we shall denote a line. If p is an integer and $p \geqq 3$, then by D_{p} we shall denote the complement of a graph obtained from D_{p-1} by adding an isolated point. As it immediately follows from Theorem 2 (and from its proof) in [1], for any integer $p \geqq 2$ it holds that: (i) G is a connected quasiperfect graph with p points if and only if G is isomorphic to D_{p}; (ii) G is a disconnected quasiperfect graph with p points if and only if G is isomorphic to the complement \bar{D}_{p} of the graph D_{p}; (iii) each exceptional point of D_{p} has degree $[p / 2]$. (If x is a real number, then $[x]$ is the greatest integer n such that $n \leqq x$; similarly, $\{x\}=-[-x]$.)

Let p be any integer such that $p \geqq 2$. We shall investigate properties of the graph D_{p}.

Proposition. D_{p} has $[p / 2] \cdot\{p / 2\}$ lines.
Theorem 1. Let t and u be points of D_{p} having degree d and e, respectively. Then t and u are adjacent if and only if $d+e \geqq p$.

Proof. The case $p=2$ is obvious. Assume that $p=n \geqq 3$ and that for $p=$ $=n-1$ the theorem is proved. Let $d \leqq e$.

The case when $e=p-1$ is obvious. Assume that $e \leqq p-2$; then t and u lie in D_{p-1}. The points t and u are adjacent in D_{p} if and only if they are not adjacent in D_{p-1}. The points t and u are not adjacent in D_{p-1} if and only if $(p-1-d)+$ $+(p-1-e)<p-1$. Hence the theorem follows.

Corollary 1. Let i be an integer, $1 \leqq i \leqq[p / 2]$. By t_{i} and u_{i} we denote points of D_{p}
with degree i and $p-i$, respectively, such that $t_{[p / 2]} \neq u_{[p / 2]}$. Then t_{i} and u_{i} are adjacent for any i and the set $\left\{t_{1} u_{1}, \ldots, t_{[p / 2]} u_{[p / 2]}\right\}$ is a maximum matching of D_{p}.

Theorem 2. Let v be an exceptional point of D_{p}. If $p \geqq 3$, then $D_{p}-v$ is isomorphic to D_{p-1}.

Proof. Let u be a point of $D_{p}, u \neq v$. By d and d^{\prime} we denote the degree of u in D_{p} or in $D_{p}-v$, respectively. From Theorem 1 it follows that if $d<\{p / 2\}$, then $d^{\prime}=d$, and if $d \geqq\{p / 2\}$, then $d^{\prime}=d-1$. This means that $D_{p}-v$ contains exactly two points of the same degree. As $\{p / 2\} \geqq 2, D_{p}-v$ is connected.

Theorem 3. Let $p \geqq 3$. The graph G obtained from D_{p} by identifying its exceptional points is isomorphic to D_{p-1}.

Proof. Let v and w be the exceptional points of D_{p} and u be any point of D_{p} such that $v \neq u \neq w$. From Theorem 1 it follows that u is adjacent to v if and only if u is adjacent to w. This means that G is isomorphic to $D_{p}-v$. Hence the theorem follows.

Lemma. Let m be a positive integer. Then D_{p} contains a subgraph isomorphic to K_{m} if and only if $m \leqq\{(p+1) / 2\}$.

Proof. The cases when $p=2,3$ are obvious. Let $p=n \geqq 4$ and assume that for $\boldsymbol{p}=\boldsymbol{n}-2$ the lemma is proved. If from D_{p} we delete simultaneously the point of degree 1 and the point of degree $p-1$, we obtain D_{p-2}, which contains a subgraph isomorphic to K_{m} if and only if $m \leqq\{(p-1) / 2\}$. Obviously, $\{(p-1) / 2\}+1=$ $=\{(p+1) / 2\}$. Hence the lemma follows.

Corollary 2. D_{p} is planar if and only if $p \leqq 7$.
Theorem 4. The chromatic number of D_{p} is $\{(p+1) / 2\}$.
Proof. The case when $p=2$ is obvious. Let $p=n>3$ and assume that for $p=$ $=n-1$ the theorem is proved. From the lemma it follows that $\{(p+1) / 2\} \leqq$ $\leqq \chi\left(D_{p}\right)$. It is easy to see that $\chi\left(\bar{D}_{p}\right)=\chi\left(D_{p-1}\right)=\{p / 2\}$. From one of the inequalities of Nordhaus and Gaddum [3] it follows that $\chi\left(D_{p}\right) \leqq p+1-\chi\left(\bar{D}_{p}\right)=$ $=p+1-\{p / 2\}=\{(p+1) / 2\}$. Hence the theorem follows.

References

[1] M. Behzad and G. Chartrand: No graph is perfect. Amer. Math. Monthly 74 (1967), 962-963.
[2] F. Harary: Graph Theory. Addison-Wesley, Reading 1969.
[3] E. A. Nordhaus and J. W. Gaddum: On the complementary graphs. Amer. Math. Monthly 63 (1956), 175-177.

Author's address: 11638 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).

