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Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

ON CONNECTED GRAPHS CONTAINING EXACTLY TWO POINTS 
OF THE SAME DEGREE 

LADISLAV NEBESK*, Praha 

(Received September 15, 1972) 

Following BEHZAD and CHARTRAND [1], we shall say that a graph G with p ^ 2 
points is quasiperfect if it contains exactly two points v and w of the same degree. 
The points v and w will be called the exceptional points of G. (For basic notions of 
graph theory, see HARARY [2].) 

By D2 we shall denote a line. If p is an integer and p ^ 3, then by Dp we shall 
denote the complement of a graph obtained from D p-i by adding an isolated point. 
As it immediately follows from Theorem '2 (and from its proof) in [l], for any 
integer p ;> 2 it holds that: (i) G is a connected quasiperfect graph with p points if 
and only if G is isomorphic to Dp; (ii) G is a disconnected quasiperfect graph with p 
points if and only if G is isomorphic to the complement Dp of the graph Dp; (iii) each 
exceptional point of Dp has degree [p/2]. (If x is a real number, then [x] is the greatest 
integer n such that n ^ x; similarly, {x} = — [—x].) 

Let p be any integer such that p = 2. We shall investigate properties of the 
graph Dp. 

Proposition. Dp has [p/2] . {pj2} lines. 

Theorem 1. Let t and u be points of Dp having degree d and e, respectively. Then t 
and u are adjacent if and only if d + e j> p. 

Proof. The case p = 2 is obvious. Assume that p = n ^ 3 and that for p = 
= n — 1 the theorem is proved. Let d ^ e. 

The case when e = p - 1 is obvious. Assume that e g p - 2; then t and u lie 
in Dp-i- The points t and u are adjacent in Dp if and only if they are not adjacent 
in Dp_v The points t and u are not adjacent in Dp~\ if and only if (p — 1 — d) + 
4- (p -- 1 — e) < p — 1. Hence the theorem follows. 

Corollary 1. Lef i be an integer, l ^ i ^ [ P / 2 ] - -By *i <™d Mi ™e denote points ofJ>p 
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with degree i and p — i, respectively, such that *o/2] * uipnv Then tt and u( are 
adjacent for any i and the set {ttuu ..., tip/21iuipl21} is a maximum matching of Dp. 

Theorem 2. Let v be an exceptional point of Dp- if p = 3, then Dp - v is iso
morphic to Dp-i-

Proof. Let u be a point of Dp, u + v. By d and d' we denote the degree of u in Dp 

or in Dp - v, respectively. From Theorem 1 it follows that if d < {p/2}, then d' = d, 
and if d ^ {p/2}, then d' = d - 1. This means that Dp - v contains exactly two 
points of the same degree. As {p/2} ^ 2, Pp — v is connected. 

Theorem 3. Lei p ^ 3. The graph G obtained from Dp by identifying its ex
ceptional points is isomorphic to Dp_t. 

Proof. Let v and w be the exceptional points of Dp and u be any point of Dp such 
that v 4= u #= w. From Theorem 1 it follows that w is adjacent to v if and only if u is 
adjacent to w. This means that G is isomorphic to Dp — v. Hence the theorem 
follows. 

Lemma. Let m be a positive integer. Then Dp contains a subgraph isomorphic 
to Km if and only if m £ {(p + l)/2}. 

Proof. The cases when p = 2, 3 are obvious. Let p = n ^ 4 and assume that for 
p = n - 2 the lemma is proved. If from Dp we delete simultaneously the point of 
degree 1 and the point of degree p - 1, we obtain Dp .2 , which contains a subgraph 
isomorphic to Km if and only if m ^ {(p - l)/2}. Obviously, {(p - l)/2} + 1 = 
= {(p + l)/2}. Hence the lemma follows. 

Corollary 2. Dp is planar if and only if p ^ 7 . 

Theorem 4. The chromatic number of Dp is {(p + l)/2}. 

Proof. The case when p = 2 is obvious. Let p = n > 3 and assume that for p = 
= n — 1 the theorem is proved. From the lemma it follows that {(p + l)/2} g 
1= x(DP)- It is easy to see that x(DP) = x(DP-i) = {P/2}. From one of the inequal
ities of NORDHAUS and GADDUM [3] it follows that x(D

P) ^ P + 1 ~ x(&P) = 
= p + 1 - {p/2} = {(p + l)/2}. Hence the theorem follows. 
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