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A MODIFICATION OF NEWTON'S METHOD 

VLASTIMIL PTÁK, Praha 

(Received June 30, 1975) 

INTRODUCTION 

In a recent paper [2] the author obtained a simple theorem of the closed graph 
type, the so-called "Induction Theorem" which gives an abstract model for iterative 
existence proofs in analysis and numerical analysis. The induction theorem not only 
provides a heuristic method for the investigation of iterative constructions but also 
yields considerable simplifications of proofs. 

The induction theorem forms the basis of the method of nondiscrete mathematical 
induction described in [8]. The method consists in reducing the given problem to 
a set of inequalities for several indeterminate functions one of which is to be a rate 
of convergence. 

In the present remark we intend to apply the method of nondiscrete mathematical 
induction to a modification of Newton's method due to Jurgen Moser. The purpose 
of the remark is twofold. First of all, the method of nondiscrete induction provides, 
we believe, a deeper insight into the essence of the use of approximate solutions of 
the linearized equation (obtained, in concrete situations, by means of smoothing 
operators or additional viscosities Or similar devices). At the same time, Moser's 
theorem provides a good example to illustrate the advantages of the nondiscrete 
method. 

1. DEFINITIONS AND NOTATION 

Let T be an interval of the form T = {t; 0 < t < t0). A function co mapping T 
into itself will be called a rate of convergence if, for each reT, the series 

r + co(r) -F co(co(r)) -F co(co(co(r))) + ... 
is convergent. 
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If a) is a rate of convergence we denote by o the sum of the above series. We 
observe that o satisfies the functional equation 

o(co(r)) -f r = o(r). 

(1.1) Lemma. Let a be a number with a > 1. Then t i—> *a is a rate of convergence 
on the interval 0 < t < 1. For sufficiently small t we have the estimate o(t) ^ 2*. 
More precisely, it suffices to have 

t g 2" 1 / ( - " 1 ) . 
Proof. If 

0 < t ^ 2~1/{fl"1) 

we have *a ^ i* and it is easy to see, by induction, that 

fnS($)nt. 
Hence o(t) S 2t. 

Let (£, d) be a metric space. 
An approximate set in E is a family of subsets of E t J—> JV(f), / eT . We define the 

limit PV(0) of this family as follows 

W(0) = n(\JW(s))-; 
r>0 s£r 

hence W(0) is the set of all limits of convergent sequences xn such that xn e W(rn) 
for a suitable sequence rn -» 0. 

If x e F and r > 0 we define 

U(x, r) = {ze E; d(z9 x) < r} 

similarly, i f M c £ and r > 0, 

U(M, r) = {z e £; d(z, m) < r for some m e M} . 

(1.2) The Induction Theorem. Let m be a rate of convergence on T Let (E, d) 
be a complete metric space; for each teTlet W(t) be a subset of E. Suppose that, 
for each teT 

W(t) c U(W(w(t)), t) ; 
then 

W(t) c U(W(0), o(t)) . 

The proof is simple and straightforward; the theorem is closely related to the 
closed graph theorem of Functional Analysis. The proof is given and the relation 
to the closed graph theorem explained in the author's remark [4]. Applications to 
existence theorems are given in [3], [2], [6], [7]. The general principles governing 
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the application of the nondiscrete induction method are discussed in the author's 
lecture [8] where further examples are given. 

Sometimes, it is more convenient to use the induction theorem in the following 
equivalent form.# 

(1.3) Let (E, d) be a complete metric space, let co be a function which maps 
T =- (0, t0) into itself and such that co{n)(t) tends to zero for all t e T. Let cp be a posi­
tive increasing function defined on T such that 

a^t) = X'PK'O)) < «> 

for each te T. Then <p o co o cp"1 is a rate of convergence. Given a family W(t) of 
subsets of E such that 

W(t) c U(W(co(t)), <p(t)) 
for each te T, then 

W(t) c U(W(0), aJit)) 
for each t e T. 

Proof. Set Z(t) = W(q>~l(t)) and apply the induction theorem to the family Z(*) 
and the rate of convergence co = q> oco ocp"1. 

2. MOSER'S THEOREM 

In this section we state and prove a slightly improved version of Moser's theorem. 
There are some formal simplifications in the statement of the theorem and the proof 
is considerably simpler. 

(2,1) Theorem. Suppose Ex c Eac E0 are three vector spaces over the complex 
field, each equipped with a norm (indexed by the same number). Suppose that the 
norm of EQ satisfies the inequality 

\u\Q S c\u\l~° \u\\ for all ueEt 

and a fixed 0 < a < 1 and that the space (Ee, \*\g) is complete. 
Further, let F% c F0 be two vector spaces over the complex field, each equipped 

with a norm (indexed by the same number). 
Let Rbe a positive number and let 

^Dx = {ueEt;\u\§£R}. 
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Let D be the closure of D_ in the space (E€, | •)_,). Letf be a continuous mapping 
of(D9 \*\Q) into (F0, |'|0) such thatf maps D_ into Fv We shall make the following 
assumptions about f. 

1° (growth) there exist two positive numbers M and S __ 1 such that 

|/(II)|_ S M max (S, |w|_) for all u e £>_. 

2° (approximation by a differential) there exists a mapping g of Dt x £_ 
into Fx and a number fi, 0 < /? < 1 such fhaf 

|/(« + p)-/(«)-«(«,-)|0_Af|«|*-'H? 

whenever both u and u + v belong to £>_. 
3° (solvability of the linearized equation) there exist two positive numbers X 

and fi with the following properties 

if ue Dx and g ef(Dt) are such that 

\g\o = m~A where m = max ((l/M) \g\u \u\uS) and if Q is any number greater 
than 1, there exists at least one v e £_ for which 

\g(u, v) - g\0 __ MmQ-» , 

|v|t __MmQ, 

|t?|o __ M\g(u, v)\0 . 
4° suppose that fi > X and 

_ ± i < mi„f;2 - ^ _ ± 0 _ t J _ ( L ± i ) , „ i___y 
,u - X \ X(p, + p) a J 

Then there exists a number 5 > 0 such that |/(0)|0 < d implies the existence 
of an element ue D for which f(u) = 0. 

Proof. Suppose that ue Dx and |/(u)|0 __ m~"A where 

(1) m __ max(|w|_, S). 

According to 1°, we have max(|«|_, S) __ |/(w)|_/Mso that m _> max(|/(u)|_/M, \u\u S). 
According to 4°, there exists, for each Q > 1, at least one v e Ex such that 

\g(u, v) + /(w)|o _S MmQ~» and \v\x f_ MmQ . 

Suppose further that 

(2) M + t?€D_ 

and let us estimate \f(u + v)\0 and j»|0. We have, by 2° 

\f(u + t;)|0 __ \f(u + *) - /(«) - # , t>)|o + |tarC«, v) + /(*)|0 . 

.__ A#|t>|r' M* + MmQ-" __ M\v\l'* (MmQf + MmQ"". 

191 



According to 3° 

|t>|0 <. M\g(u, v)\0 £ M(\g(u, v) + f(u)\0 + \f(u)\0) g 

SM(MmQ-» + m~x). 

Let us assume further that 

(3) MmQ~* £ m~x . 

Under these assumptions it follows that \v\0 £ 2Mm~x whence 

\v\tg,c21-"Mm-X(1-")+-Q' 

\f(u + v)\0 ^ PQ" + qQ-" 

where p = M3 22-fm~•-<--»+' and q = Mm. 
We shall write 1/r for m. We intend to show that there exists a number a > 1 

such that 

(5) qQ-" <. $r"x 

(6) PQf £ir°x 

for a suitable Q > 1. First of all let us note that condition (5) implies condition (3). 
If such a number a exists it is possible to expect that t -* t" will be a suitable rate of 
convergence. Since \u\t <, m = l/r it is natural to impose further the following con­
dition 

(7) Q^ — r1-' 
v ' 2M 

which will ensure the estimate \v\t g i(l/r)0 w h e n c e 

|u + , |1<H1 + H ^ ; + ^Qa 

and this will not exceed (l/r)fl as soon as 

Summing up: our task reduces to finding an a > 1 for which there exists a Q satisfying 
the following conditions 

1 < 0 

(5) (2M)1'" r-<1+"i>/" m far-"1)1'* jj Q 
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( 7 ) Qѓ—r1-
2ЛЃ 

(6) 
/ 1 \1/ß 

— (2 3 -^M 3 Y 1 / p r _ ( Д ( 2 " ß ) " / ' - ' , A ) / / , 

If there exists an a such that 

sc~r\ 1 4- aЛ 4 (57) < a - í 
Џ 

and 

(56) í + aX<l(Ц [2-ß)-ß-aX) 

then there exists an r(a) with the following property: for each 0 < r <J r(a) there 
exists a g > l (depending on r) satisfying (5), (6) and (7). Since fi > X, condition 
(57) is equivalent to 

li + 1 
(57) a > 

and condition (56) to 

(56) a < 2 - p '• 

H — X 

and condition (56) to 

,A + (X + !)(/. + !) 

AO* + 0) 

If condition 4° is satisfied, it follows that it is possible to choose an a which satisfies 
both (56) and (57). 

It follows that 

|»L _ c 2X~'M f — Y r*l-a)-°a ; 1 |e ~ \2M) 

this will tend to zero with r if A(l — a) — <ra > 0. Choose a positive £ such that 
co = A(l - a) - <ra - e > 0. If r £ (c 2wM(2M)-")-1/f i, we shall have \v\Q <J r". 
The new condition to be imposed on a is the following 

(9) fl<;i__-_L_r 
o* 

It follows from condition 4° that (/i + 1)/(/J — A) < (1 — o)\o so that a may be 
chosen so as to satisfy (56), (57) and (9). Once such a is fixed, for any r <* r(a) there 
exists a Q > 1 satisfying (5), (6) and (7). Now let - # ' 

r0 = min (S~\ r(a)9 2"1^"1>, (c 21-2*M1-*)-1'6) 
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and, for each r <J r0, set 

W(r) - {« e D.; |«|, £ tf - <7(r»), |u|x jg l/r, |/(«)|0 ^ r*} . 
t 

Here, of course, a is the function corresponding to the rate of convergence t -• f, 
hence a(t) = f 4- 1f* + f2 + .... The preceding discussion shows that 

W(r) c U(W(r% rw) 

for r 51 r0, the neighbourhood being taken in the norm | • \Q. 
To complete the proof it will be sufficient to show that there exists an r 51 r0 such 

that Oe W(r). If r <I r0 then Oe W(r) is equivalent to |/(0)|0 £ rA and a(r°>) <I R. 
If 

0 < , < Q • 
we have a(t) <* 2t by lemma (1,1). It follows that the inequality a^) <I R will be 
satisfied if r<* <I (l)1*'"1* and 2r<° <I R, in other words, if r 51 min((i)1/<0(i,""1), 
(iR)t,m). Now set S = (min (r0, (!)

1/co(a-1), (l#)1/ft>))A and suppose that |/(0)|0 £ 5. 
If r = (|/(0)|0)1M, we have |/(0)|0 <* rA and a(r<°) g R so that Oe JV(r). It follows 
from the induction theorem that W(0) is nonvoid, in other words, there exists a u e D 
for which f(u) = 0. 

The proof is complete. 
The author wishes to thank M. SiiDRtf for several stimulating conversations con­

cerning Moser's theorem and its applications. 
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