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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

ON THE LATTICE GROUP VALUED MEASURES 

BELOSLAV RIECAN, Bratislava 

(Received July 7, 1975) 

In the paper we study some properties of non-negative lattice group valued 
measures on topological spaces. Naturally enough, this group is assumed to satisfy 
a certain regularity condition. Therefore, the first part is devoted to this condition, 
a generalization of the Alexandroff theorem being proved here. The second part is 
concerned with the product of measures and the third one with the Kolmogoroff 
consistency theorem. 

Let G be an Abelian lattice ordered group, i.e. and Abelian group which is a lattice 
and which satisfies the implication: X < J - > X + Z < J T Z . A group valued sub-
measure fi is a mapping /*: 0t -* G, where 0t is a ring of subsets of a space X, non-
decreasing, subadditive, fi(0) =» 0 and upper semicontinuous in 0 (i.e. An \ 0 => 
=> fi(An) \ 0). An additive submeasure is called measure. (Of course, every measure 
is <7-additive.) 

Definition 1. An Abelian lattice ordered group G is weakly regular*) if it satisfies 
the following condition: Let a e G, a > 0 and let an \ 0 (i -• oo), then there are 
such ii9 i29... that 

1=i 

for no n. 
As an example of a weakly regular group let us take the additive group R of all 

real numbers. In this case it suffices to choose ik such that 

2* 

*) We say "weakly" since there is a stronger notion of regularity used in [5]. 
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Then 

a й £ a'/ 
J = -

for some it implies 
» ... 

^ T^ a 

j - = i 2 J 

which is impossible. 

Now let us present two less trivial examples. 

Example 1. Every linearly ordered group is weakly regular. First we construct 
the sequence {ij}j*t* Since a\ \ 0 (i -> oo), it is also 2a[ = a\ + a\ \ O, hence 
there is it such that 2aJ* < a . Similarly there is i2 such that 4a^2 < a and generally 

ii 

there is ** such that 2*aJ* < a . If a g J] a]' then 
- f - i 

2wa j£ 2"nil + 2na^2 + ... + 2nan
n = 

-= 2"-1 2a!1 + 2B~2 22aj? + ... + 1. 2na£» < 

<2"""1a + 2n"2a + ... + 1 . a = (2n - 1) a , 

which is impossible. 

Example 2. Every regular K-space is a weakly regular group. A regular K-space 
(see [6] Th. VI.5.2) is a linear semiordered space (= Riesz space = K-lineal) which 
is relatively complete and such that every sequence of convergent sequences has 
a common regulator of convergence. If bn \ 0, then u > O is a regulator of con­
vergence of {bn}nssl iff to any number e > 0 there is n0 such that bn < eu for every 
n —• w0. Hence bn \ O is false iff to any u > O there is e > 0 such that for any n0 

there is n j ~ n0 such that bn < eu is false. Now let an \ O (i -> oo, n = 1, 2,...) 
and let u be the common regulator of convergence of all {an}%l9 n = 1, 2, — 
Given e > 0 there is !„ such that 

i ^ an
n < — M . 

" 2" 

If 
wo »0 „ 

j = i j - i 2J 

then a < eti for every e < 0 which is a contradiction since a > O. 
In the paper we shall consider only regular measures. 

Definition 2. Let ^ be a family of subsets of a set X. We say that ^ is a compact 
family if *6 is closed under finite intersections and every decreasing sequence of 
non-empty sets of <€ has a non-empty intersection. 
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Definition 3. Let & be a ring of subsets of a set X, <£ c 0t9 <g a compact family. 
Let / i : ^ -* G be a lattice group valued submeasure. We say that ju is inner regular 
if to any Ee0t there are such sets Cne<& (n = 1, 2,...) that CB c Cw+1 c £ 
(« = 1, 2,...) and 

li(E - Cn) \ 0 . 

The following theorem is a generalization of the Alexandroff theorem. Various 
other generalizations in the real-valued case are found in [4]. 

Theorem 1. Let G be weakly regular, <r-complete9*) Abelian lattice-ordered 
group. Let X be a topological space, 0t a ring of subsets of X. Let fx : 0t -» G, 
/i(0) = O be monotone9 subadditive and inner regular. Then p, is upper semicon-
tinuous in 0. 

00 

Proof. Let An \ 0 (i.e. An z> An+i (n = 1, 2,...) and f] An = 0). We want to 
«==-I 

prove that fi(An) \ O. Let us prove it indirectly. Since G is <r-complete, there is 
a > 0 such that fi(An) J> a. Since \i is inner regular, to any n there are Cn e # 
(i = 1, 2,...) such that 

C ' c z C ^ c z ^ , 0=1,2 , . . . ) 
and 

li(An -Cn)\0 (i -+ oo) . 
Put 

<*„ = M^«) > <*» = K ^ n ~ Cn) 

and choose it, i2 , . . . by Definition, 1. Now put 

Dt = C[\ D2 = C<2 n Cj1,..., A, = CB» n C ^ 1 n ... n Q , . . . . 

Then DB€^, Dnz> Dn+t (n = l ,2,. . .) . We prove that £>„ * 0 (« = 1,2,...): 
If Dn = 0, then 

a S n(An) £ fi((\j(Aj - Cj9)u(nC}9) =̂  

i = i 1=1 

= f ^ - <#) + a(Dn) = f/<Ay - Cy) = ta'/ 

which is impossible. 
oo 

Since Dn z> D.+t, !)„ e €€9 Dn # 0 (n = 1. 2,...), we have f] Dn =¥ 9. But !>„ c Ah 
» = i 

00 

(n = 1, 2,...), hence also f) An # 0, which is a contradiction. 

*) I.e. every bounded countable set has the supremum. 

345 



Now we want to prove a theorem oh the product of two measures. Usually the 
product of two measures \i, v is defined as such a measure X in the cartesian product 
that 

X(E x F) = \i(E)v(F) 

for all E, F from the corresponding domains. However, in our general group G we 
need not have any product. Hence we shall assume that there are given three groups 
Gt, G2, G and a mapping 

• n : Gi x G 2 -> G 

satisfying some conditions. We shall need the following three simple conditions: 

1. n(a + b, c) = n(a, c) + n(b, c), n(a', V + c') = n(a!, V) + n(a',c') for all 
a, b, a' eG t , c, V, c' eG2. 

2. If a ^ O, b = O, a e Gx, b e G2, then n(a, b) ^ 0. 

3. If an \ 0, bn\ 0, an e GL, fe„ e G2 (n = 1, 2,...) then n(an, bn) \ O. 

Theorem 2. Let 0tt or 0t2 be rings of subsets of Xt or X2 respectively. Let 
\i\0tt-+ Gt, v \0t2~* G2 be inner regular measures. Let G be weakly regular, 
a-complete, Abelian, lattice-ordered group. Then there is exactly one G-valued 
measure X defined on the ring 01 generated by the family Q> = [E x F; Ee0tx, 
F E 0t2} and such that 

X(E x F) =* n(ii(E), v(F)) 

for all Ee0tt, F £0t2. 

Proof. Define first X0 \ 9 -» G by the formula X0(E x F) = n(n(E), v(F)). Evi­
dently X0 is additive, monotone, Xo(0) = 0. Hence we can extend X0 to a function 
A : 0t -* G by the formula 

A(U^) = ZA0(^) 
i = i . t - i . 

where ALj are disjoint sets from & (i = 1,..., n). The function X is also additive, non-
negative (and therefore monotone and subadditive). It suffices to prove that X is 
upper semicontinuous in 0. 

Let ^ j , *£2 be compact families of subsets of Xt or X2 respectively. Let <% consist 
of all finite unions of sets of the form C x D where Ce<$u De<$2. Then <€ is a com­
pact family. 

m m 

Now let i e £ Then A = U -4* = U (£i x -̂ i)* where 4̂* are pairwise disjoint. 
i*i r*-r ' 
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Since Et e dtt and fi is inner regular, there are C* e C t (n = 1, 2,...) such that 

Cn
tczC1+l cEi (n = 1,2,...) 

and 

fi(Ei- C?) \ 0 ( n - o o ) . 

Similarly there are Dn
ie

c€1(n = 1,2,...) such that 

D?c DJ+1 c Ff (n = 1,2,...) 
and 

v(F* - D?) \ 0 (n - oo) . 

By the third property of n we have 

X(At -C1 x £>?) = A((£* x Ff) - (C? x D?)) g 

£ 4l4?i - C0> KF,.)) + n(ix(E^ v(Ft - Dj)) s, O (n -* oo). 

m 

Put K,, = U (CT x D1) (n = 1, 2,...). Then #„ e«f, KB = Kn+1 cA(n = l,2,...) 
i = l 

and 
m m 

A(A - K„) = A(lMi - U(e? x ->?)) = 
i = l i = l 

m m 

= A( U (A, - CI x DJ)) - S ^ i ~ C? x DJ) s, 0 
i = l i = l 

if n -^ oo. Hence A is regular and the proof is complete. 

Remark. A special case of Theorem 2 is Theorem 2 in [3]. 

Let {Xt}teT be a family of topological spaces. Denote by F the set of all finite 
subsets of T. For any a e F put Xa = X Xt. If a, j8 e F, a z> /? then 7câ  denotes the 

tea 

projection nafi : Ka -» Xfi. Every Xa is a topological space with the product topology 
and every nafi is a continuous mapping. Let G be -a weakly regular Abelian /-group. 

Now we shall assume that we are given a consistent family of inner regular G-valued 
measures {^}aer. Of course, regularity is taken with respect to the compact family 
of compact subsets of the corresponding space. Hence for every <x ^> f} and every 
E e 0tp (dtp is the domain of ftp) we have 

*;,'(£) e ®a , na(n;fi
l(E)) = fip(E). 
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In this case the projective limit of the projective system (Xa, 0ta, pa, nafi) is 
(X,0t,p,na), where X -\Xt, na is the projection na :X -+ Xa, 9t = {na

l(E); 
teT 

Ee0ta,aB r}, p(A) = p(na
%(E)) = pa(E). It is not difficult to prove that the defini­

tion of p is correct (p does not depend on the choice of a), 0t is a ring and that p 
is additive, monotone, p(9) = 0. The only problem is whether p is a-additive, i.e. 
whether 

(X, m, p, na) 

is the projective limit of the system in the category of measure spaces (see [1], [2]). 

Theorem 3. Let G be a weakly regular, a-complete, Abelian l-group. The func­
tion p defined above is a measure and (X,$,p,na) is the projective limit in the 
category of measure spaces. 

Proof. To prove that p is cr-additive it suffices to prove that p is upper semicon-
tinuous in 0. Let c€a denote the family of all compact sets in Xa. Put 

<̂  = {7i;1(£); £ e t « e r } . 

Evidently p is inner regular with respect to (€. We prove that ^ is a compact family. 

Let Cne<$, C „ D C B + 1 , C n * 0 (n = l,2,. . .). Then Cn = ^ ( .D,) , Dne<$an 
00 

(n = 1,2,...). The set U <xn is countable. Put 
» = i 

00 

I K = {h>t2,t3,...}. 
11=1 

Consider the sequence 

{nM{Cu)}?ml. 

If tt 4 <xn, then n{tl)(Cn) = Xtl. If tt e an, then {tt} cz a„, hence 

and this is a compact subset of Xri- Moreover, the sequence {n{tl)(Cn)}n^i is de­
creasing, therefore 

oo 

H n[ti)(C„) * 0 . 
„-=l 

00 

Denote by x£ an element of f\ n{ti)(Cn) and repeat the procedure with the second 

coordinate t2: 

n = i 

En - 7t{r2)(CB n *(7,>({*?,})) • 

Then E„ => £„+., £„ is closed (n = -> 2» .••) and £„ is compact if f2 e a„. Hence 

0 E, * 0. 
• " i 
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00 

Denote by x°2 an element of f) En. Repeating this procedure we obtain a sequence 
»-~i 

x° x° x° 
H* *2' * ••* *V 

such that 

<en*{jc.n'na-S}))• * -1,2,..., 
11=1 i = l 

hence to any n there is x e Cn such that 

xfl = xri, Xf2 = xf2,..., xtk = xflc. 

Define x° by the following formula: 

(x°), = x?, if te(J<xn 

(x°)t = an arbitrary element of Xt, if f £ \Jocn. 
00 

Now we assert that x° ef\ Cn. 
» = i 

Take arbitrary n and k such that a„ c {f1$..., f*}. We know that there is x e C„ 
such that 

x f l = x r i , x f2 = x r2, ..., xtk = x f k . 

Put an = {fit,..., tjm}. Since x e Cn9 n^Jx) e Dn, hence 

(x^,..., x?J = (xfii,..., xtjJ eDn. 

But it follows that nan(x°) e Dn9 i.e. x° e n^l(DH) = C„. 

We have proved that ^ is a compact system. By Theorem 1 n is upper continuous 
in 0, i.e. \x is a measure. 
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