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Časopis pro pěstování matematiky, roč. 103 (1978), Praha 

CLASS OF UNIMODAL 
DISTRIBUTIONS AND ITS TRANSFORMATIONS 

TOMAS CIPRA, Praha 

(Received March 31, 1977) 

1. INTRODUCTION 

The class of unimodal distributions plays a very important role in statistics and 
in the theory of probability. Transformations of this class given in this paper (see 
also KEMPERMAN [7]) enable us to describe some important properties of the class 
of unimodal distributions (e.g. a description of the set of all extreme points of this 
class) and to compactify the class in the weak topology. This approach by means of 
the measure theory has proved to be more efficient than the former ones (MUL-
HOLLAND, ROGERS [9]). The class of multivariate unimodal distributions is defined 
so that similar transformations are possible. Therefore this definition of multivariate 
unimodality is rather different from the former ones (e.g. DONATH, ELSTER [3]). 
A relation to the class of logarithmic concave measures (see PR£KOPA [11], [12]) is 
shown. Theorems on representation of the normal distribution and on the solution 
of the moment problem through the class of unimodal distributions demonstrate an 
application of the theory. 

The arrangement of the work is following: 

Section 2 deals with the one-dimensional case. The main results of this section 
are represented by Theorems 2.1, 2.2. Remark 2.2 describes the set of all extreme 
points of the class of unimodal distributions U[x0] with a fixed inflexion point x0. 
Further, the compactification of the given class is carried out (see the class U*[x0] 
in Definition 2.2 and Theorem 2.3). 

Section 3 that is devoted to the class of multivariate unimodal distributions 
(Definition 3.1) contains the main results of the paper. There exists an advantageous 
relation to marginal distributions (Lemma 3.1) and analogous transformations 
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\i = Tv can be defined (Theorem 3.1 for the non-compact case and Theorem 3.2 
after the compactification according to Definition 3.2). The relation to the class of 
logarithmic — concave measures is shown in Theorem 3.3. As some important multi­
variate distributions (such as the normal, beta, Wishart's distributions) are examples 
of the logarithmic concave measures (see PRJGKOPA [11]), these distributions belong 
after certain orthonormal transformations to our class of unimodal distributions or to 
a modified class (in the sense of Remark 3.2). 

The assertions of Section 2 are given without proofs because they are special cases 
of more general assertions in Section 3. The proofs in Section 3 are outlined very 
briefly for their extensions. The detailed proofs of Section 2 may be found in CIPRA 

[1] and of Section 3 in CIPRA [2]. 
We use the notation \i(g) = y to denote that \x(g^) = yi9 i = 1,..., n. Symbols 

$x>$x+o> J-*> J-to° W*H mean an integration over intervals [x, +oo), (x, -foo), 
(—oo, x), (— oo, x] respectively. A probability density is always considered relative 
to the Lebesgue measure. 

2. CLASS OF ONE-DIMENSIONAL UNIMODAL DISTRIBUTIONS 

Let us begin with a definition: 

Definition 2.1. A random variable X has the unimodal distribution with an inflexion 
point x0 e R if its distribution function F(x) == P(X < x) is continuous and is convex 
in (~oo, x0] and concave in [x0, +oo). U[x0] will denote the class of the corres­
ponding probability measures. 

Remark 2.1. t/[x0] is obviously a convex class of probability measures. Let 
ft e I/[x0] have a distribution function F. Then F is even absolutely continuous ac­
cording to the e, 8 - definition of the,absolute continuity (see e.g. NATANSON [10]). 
Let us denote 

(2.1) /(x) = F'(x - 0) , x4=x 0 . 

Then/is a density of F such that 

(2.2) / is continuous from the left for x 4= x0, non-decreasing in (— oo, x0) and 
non-increasing in (x0, + oo) . 

We may conclude: a probability measure \i with a distribution function F belongs 
to I7[x0] iff a density / o f F exists such that (2.2) holds. 

Let us denote by P[x0] the class of all probability measures v on (JR, $) (@ is the 
<r-field of all Borel subsets of R) such that v({x0}) = 0. We define the transformation 
pi a Tv, v e P[x0] where the density / of \i has the form 
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Cx 1 
(2.3) f(x) == v(du) , x e ( - oo, x0), 

J-oo^o - a 
r°° i 

(2.4) f(x) = v(dw) , x e (x0, + oo) . 
J * w - x 0 

It is easy to verify that f is really a probability density. 

Theorem 2.1. The transformation Tdescribed in (2.3), (2.4) is a 1-1 correspondence 
between the classes P[x0] and U[x0]. 

Theorem 2.2. This transformation T is a homomorphism in the sense of convex 
mixtures, i.e.: Let vaeP[x0] for each ueR9 let X be an arbitrary probability 
measure on (P, $). Let us define a probability measure v as follows: 

(2.5) v(A) = J vu(A) X(du) , A e 01. 

Then v e P[x0] and 

(2.6) Tv(A) = J Tvu(A) X(du) , A e @ . 

Remark 2.2. Theorem 2.2 enables us to describe the set of all extreme points of the 
convex class U[x0] because we can give at once the set of all extreme points of P[x0]: 

{eu: u e R9 u =f= x0} 

where eu is a degenerate probability measure concentrated in u, i.e. ^({w}) = 1. 
Therefore according to Theorem 2.2 the set of all extreme points of U[x0] is 

(2.7) {fi, = Teu:ueR9 u * x0} . 

A measure \iu9 u e (— oo, x0) or u e (x0, + oo), can be described explicitly as a uniform 
distribution concentrated in (w, x0) or (x0, u), respectively. 

Neither U[x0] nor P[x0] is weakly compact, i.e. compact in the weak topology 
in the space of probability measures that induces the convergence in distribution. 
As a simple example we can consider this sequence of distribution functions {F„}: 

Fn(x) = 0 , x e ( - oo, x0 J, 

= 1, x e x 0 + - , + o o j , 

= - ( x - x0 + - ] , x e ( x 0 , x0 + - J . 

2 V nj \ n n) 
Some applications (e.g. the theorems on minimax in FAN KY [5]) show that the 
compactification of the class V[xo\ is desirable. 
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Definition 2.2. Let x0 be a fixed real number. U*[x0] will denote a class of all 
probability measures on (R, &) such that their distribution function F is convex 
in (— oo, x0) and concave in (x0, + oo). 

Remark 2.3. It is obvious that U[x0] c: U*[x0] and that U*[x0] is a convex set. 
The following conclusion holds again: a probability measure /x belongs to U*[x0] 
iff a function / with the property (2.2) exists such that for each Borel subset A <=• 
<= ( - oo, x0) or A c. (x0, + oo), 

fi(A)=[f(x)dx. 

We can give an analogous transformation \i = Tv to the one defined in (2.3), (2.4): 

(2.8) F(x) = J f(t) dt, x e ( - oo, x0] , 

(2.9) F(x) = v({x0}) + f f(t) dt, x 6 (x0, + oo) , 

where v is an arbitrary probability measure on (R, $)9 F is the distribution function 
of \i and/is defined according to (2.3), (2.4). 

Theorem 2.3. The transformation T described in (2.8), (2.9) is a 1-1 correspon­
dence between the class of all probability measures on (R9 &) and U*[x0] that 
is a homomorphism in the sense of convex mixtures (see Theorem 2.2) and a homeo-
morphism in the weak topology. 

Remark 2.4. The class of all probability measures is weakly compact, therefore 
the class U*[x0] is weakly compact, too. As to the set of all extreme points of U*[x0] 
it is the set described in (2.7) completed by the measure ex . 

3. CLASS OF MULTIVARIATE UNIMODAL DISTRIBUTIONS 

We formulate the results only for the two-dimensional case but the generalization 
for higher dimensions will be obvious. 

Definition 3.1 takes advaritage of Remark 2.1. Let us denote S = {(x, y) e R2 : 
: x = x0 or y = y0}. This pair of axes divides the plane into four parts that will 
be called the open quadrants relative to (x0, >>0). 

Definition 3.1. Let (x0, y0) e R2 be a given point. I/[x0, j>0]
 W]M denote a class of 

all probability measures on (R2,0i2) with a density / satisfying the following 
properties: 
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(i) For each x =t= x0 the function fx = / (x , •) is continuous from the left for 
y =# y09 non-decreasing in (—00, y0) and non-increasing in (j;0, +00), and analo­
gously for each y =# y0 the function fy = / ( • , y) is continuous from the left for 
x =1= x0, non-decreasing in (— 00, x0) and non-increasing in (x0, + 00). 

(ii) /,(— 00) = fx(+ 00) = 0 for each x # x0 and 

/ , (-oo) =/ y (+°°) = 0 for each y =f= y0. 

(iii) Let (xl9 j^) , (x2, y2) e R2 be two arbitrary points in the same open quadrant 
relative to (x0, y0) such that |x0| < \xt\ < |x2|, \y0\ < \yt\ < \y2\. Thtnf(xl9 y^) -
- f(xu y2) - f(xi> yi) + f(xi> y2) ^ 0; 

The following lemma shows an advantageous relation of the multivariate unimodal 
distributions to the marginal ones that is similar to the normal distributions. 

Lemma 3.1. (i) Let a probability measure \i on (R2
9 @

2) be a joint distribution of 
independent distributions p,t e U[x0] and \i2 e U[y0]. Then p. e U[x0, y0\ 

(ii) Let / ,el/[x0 , y0] have a density f(x9y) and let y + y0 be such that the 
marginal density fi(y) + 0- Then the distribution corresponding to the condU 
tional density f(x j y) belongs to U[x0]. 

Proof. Both assertions can be verified very easily. 

Let P[x0, y0] be the class of all probability measures v on (R2
9 Si2) such that 

v(S) = 0. Now analogously to the one-dimensional case we are able to define 
a transformation \i = TV, v e P[x0, >>0] such that the density / of \i is 

noo -I 

— -v(d«,di>), x > x 0 , y>y09 
9 (u ~ *o) (v - yo) 

Cx f00 1 
1 w x v(dw> dv)> x <xo> y>yo 

J-ccJy (*0 ~ U)(V - y0) 

and analogously for the other two quadrants. 

Theorem 3.1. The transformation T described in (3A) is a 1-1 correspondence 
between the classes P[x0, y0"] and U[x09 j>0] and it is a homomorphism in the sense 
of convex mixtures (see Theorem 2.2). 

Proof. Let \i e U\x09 y0"] have a density/for which the conditions from Definition 
3.1 are fulfilled. If we denote by St\ the system of all Borel subsets in the i-th open 
quadrant relative to (x0, y0)9 we can define measures gt on &\9 i = 1,...,4, in this 
way: 

(3.2) 6i(l) = f(al9 h) - f(al9 b2) - f(al9 bt) + f(al9 b2) 
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for each semiclosed interval I = [al9 a2) x [bl9 b2) lying in the i-th open quadrant 
relative to (x0, y0). Obviously, the measures gt are determined uniquely by this 
condition. If we define-a measure v on (R2

9 @
2) as follows 

(3.3) v(A) = f| |M — x0| |t; - y0\ Qi(du9 dv), Ae@2
i9 i = 1,..., 4 , 

v(A) = 0, A e ®2 , A c S , 

then it is easy to verify that v eP[x0, y0] and (3.1) holds. Thorefore for each \i e 
e U[x09 j>0] a measure v e P[x0, j>0] exists such that \x = Tv. 

Conversely, let \x = Tv, where v is a given measure from P[x0, y0\ We will show 
that fie U[x09 y0~]. Let us define non-negative measures Tt on @2

9 i = 1,..., 4, as 
follows: • 

(3.4) T,(du, dv) = - v(du, dv) , i = 1,..., 4 . 
\u - x0| |t> - y0\ 

Then 

(3.5) /(x, >;) = Ti{(u, i?) : u ^ x, i> = j} , x > x0 , y > y0 , 

/(x, y) = T2{(U, v):u£x, v^y), x < x0 , y > y0 , 

and analogously for the other quadrants. 
Properties of the measures x{ (the non-negativity and the monotonicity) imply that / 

fulfils the conditions from Definition 3.1. 
Finally, a measure v is determined uniquely by the measure \i = Tv, for the mea­

sures T; are determined uniquely by fi according to (3.5) and there is a 1-1 correspon­
dence between T4 and v according to (3.4). 

As to the proof of the fact that the transformation Tis a homomorphism in the 
sense of convex mixtures it is necessary to treat Tv(Ai) separately for Ae&2

9 i = 
= 1,..., 4, by means of (3.1) and to use the generalized Fubini theorem (see e.g. HALMOS 

The compactification of the class U[x09 y0] is carried out in the following definition 
(see Definition 2.2 and Remark 2.3): 

Definition 3.2. Let U*[x09 j>0] be the class of all probability measures on (R2
9 &

2) 
such that a function f defined for (x, y) $ S exists with the following properties: 

(i) / has the properties (i), (ii), (in) from Definition 3.1; 
(ii) for each A e $2

i9 i = 1,..., 4 

M-]]/(*,.v) dxdy 

where &\ is the system of all Borel subsets in the i-th open quadrant relative 
to (*o> yo)-
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A transformation \i = Tv from the class of all probability measures on (R2, 0k2) 
to the class U*[x0, y0] is possible again. It can be defined as follows: 

(3.6) li(A)=[[f(x,y)dxdy 

for each A e 3&\, i = 1, . . . , 4 where / is defined in (3.1), 

(3.7) »(A) = v(A) 

for each Ae^2, A a S. 

Obviously, the measure \i on (R2, ffl2) is determined uniquely by means of (3.6), 

(3-7). 

Theorem 3.2. The transformation Tdescribed in (3.6), (3.7) is a 1-1 correspondence 
between the class of all probability measures on (R2, 0k2) and the class U*[x0, J Q ] 
that is a homomorphism in the sense of convex mixtures (see Theorem 2.2) and 
a homeomorphism in the weak topology. 

Proof. The proof of the fact that Tis a 1-1 correspondence and a homomorphism 
in the sense of convex mixtures is quite analogous to the proof of Theorem 3.1. We 
limit ourselves to prove that Tis a homeomorphism in the weak topology. 

As the space of all probability measures is weakly compact it is sufficient to prove 
that T is continuous in the weak topology. Let Vj -> v. We shall show that fij = 
= Tvj -> \i — Tv or equivalently, JJ<p d/j,- -> JJ<p dju for each bounded continuous 
function cp on R2. Let <p* = Tcp be the transformation of the function <p according 
to (3.11), (3.12) in the next part of the paper (obviously, cp is locally integrable). 
It may be verified that cp* is a bounded continuous function, too. Therefore 
JJ<p* dvy -> JJ<p* dv. An application of the forthcoming Lemma 3.2 completes the 
proof because JJ<p* dv,. = j$(p d/ij9 JJ<l>* dv = JJ<p dfi. 

Remark 3.1. Theorems 3.1, 3.2 enable us to find an explicit description of the set 
of all extreme points of the classes Lr[x0, y0~] and U*[x0, y0~]. It is the system of all 
two-dimensional uniform distributions concentrated in two-dimensional open inter­
vals whose one extreme point is just (x0, y0) for the class U[x0, y 0 ] , and it is the 
former one completed by the system {siUfV) : (u, v) e S} for the class t/*[x0, y 0 ] . 
The class U*[x0, .y0] is really weakly compact with respect to Theorem 3.2. 

Now we shall mention a certain connection of the class of multivariate unimodal 
distributions with the class of the so called logarithmic concave probability measures 
that has important applications in the stochastic programming (see PR£KOPA [11]). 
A probability measure P on (JRW, 0t)s is logarithmic concave if the inequality 

(3.8) P(XA + (1 - A) B) = [P(A)]X [P(B)f~x 

holds for arbitrary convex sets A, B e Rn and each 0 < k < 1. According to PR£KOPA 

[12] a probability measure P on (Rn, $n) is logarithmic concave iff P is absolutely 
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continuous relative to the Lebesgue measure with a density 

(3.9) f(x) = exp{-Q(x)}, xeR" 

where Q is a convex function in Rn. Some important multivariate probability distribu­
tions such as the normal, beta or Wishart's distributions belong to this class (see 
PRSKOPA [11]). 

Theorem 3.3. Let P be a logarithmic concave probability measure on (Rn
9 06>n) 

with a density (3.9) where Q is a separable convex function in Rn. Then a point 
(zl9..., zn)' e Rn exists such that P e U\zu ..., zn\ 

Proof. First we prove the theorem for n = 1, i.e. f(x) = exp { — Q(x)} where Q 
is a convex function in JR. With respect to the convexity of Q and to the fact that 
j exp {— Q(x)} dx = 1, a point x0 must exist such that Q is non-increasing in 
(—oo, x0] and non-decreasing in [x0, 4-co) and therefore f(x) = exp{ — Q(x)} is 
non-decreasing in ( — oo, x0] and non-increasing in [x0, -foo). Moreover, / is con­
tinuous for the convex function Q is continuous. Hence P e U[x0] in virtue of 
Remark 2.1. 

The case for general n is a consequence of Lemma 3.1(i) because 
n n 

exp { - Q(x l5..., xn)} = exp { - £ Qfai)} = I"I exP { ~ &(**)} • 
i-=l *--T 

This theorem implies immediately the following corollary. Let P be a logarithmic 
concave probability measure on (Rn

9 J*) with a density (3.9) where Q is a quadratic 
form Q(x) = x'Qx with a positive semidefinite matrix Q (hence Q is a convex 
function). Then there exists an orthonormal matrix T (i.e. T'T = TT = /„) and 
a diagonal matrix D with non-negative eigenvalues Xl9 ...9Xn of the matrix Q in its 
diagonal so that Q -= T'DT. If we consider an orthonormal transformation y = Tx 
of the space Rn

9 the density/in (3.9) will change into 

(3.io) g(y) = e*p{-ii,yl}. 
i=-l 

This function g is a unimodal density (in the sense of Definition 3.1) according to 
Theorem 3.3. As a special case we obtain e.g. 

Theorem 3.4. (on a representation of the normal distribution). Let \i be an n-
dimensional normal regular distribution with a vector of expectation a and a posi­
tive definite variance matrix E. Then there exists a uniquely determined probability 
measure X such that the normal distribution \i can be expressed as 

(3.11) ii(A) - I ... p fit(T(A - a))Mdt) for each Ae&* 
J — 00 J —oo 
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where \it denotes an n-dimensional uniform distribution concentrated in an n-
dimensional open interval such that O, t are two of its extreme points, T is an ortho-
normal matrix such that £ = T'DT where D is a diagonal matrix with the positive 
eigenvalues 0/E in its diagonal, T(A — a) = {y :y = T(x — a), xe A}. 

Now it will be shown how to solve the moment problem through the class of 
unimodal distributions (see also KEMPERMAN [7]). An ample theory has been de­
veloped for the solution of the moment problem through the class of all probability 
measures on (Rn

9 0&n) (see e.g. KEMPERMAN [8], CIPRA [1]). Fortunately, the moment 
problem through the class of unimodal distributions can be transformed into the 
problem through the class of all probability distributions in virtue of the following 
Theorem 3.5. But first it is necessary to define the following transformation of 
functions. 

Let q>(x9 y) be'a real Borel measurable function in R2 that is locally integrable in 
all open quadrants relative to (x0, y0)9 i.e. integrable in each bounded interval in 
these quadrants. Then we define 

(3.12) T<p(u9 v) = <p*(u9 v) = i ; I I <p(x9 y) dxdy, 
(u ~x0)(v- y0)JxJyo 

(u9v)$S9 

(3.13) q>*(u9 v) = <p(u9 v) , (u9 v) e S . 

This means we use the same symbol T both for the transformation of measures 
and functions. The following assertion can be easily proved: 

Lemma 3.2. Let a function <p fulfil the above assumptions and let v be an arbitrary 
probability measure on (R2

9 $
2). Then 

< +00 (3.i4) r r Hd/K+oo iff r r .> idv 
J—ooj—oo J — o o j — 00 

where \i = Tv. 

Moreover, if at least one inequality in (3.14) holds then 

t»00 t*00 /*00 r<X3 

(3.15) <pdn = T<p dv. 
J-ooJ-oo J-ooJ-oo 

Let us confine ourselves to the moment problem consisting in finding an infimum. 

Theorem 3.5. Let gi,.-.,gn9h be real Borel measurable functions in R2 that 
are locally integrable in each open quadrant relative to (x09 y0)9 yeRn a given 
vector. We denote 

(3.16) L(y | h) - inf {fi(h) : „ e l/*[x0, yo] n M, n(g) = y} 
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where M is a system of all probability measures on (R2, &2) such that ft(\h\) < 
< +oo. Then 

(3.17) L(y] h) - inf {v(h*) : v e Mfin , v(^*) = y] 

where Mfin is the system of all probability measures on (JR2, $2) with finite sup-
ports. 

Proof. It is obvious from Theorem 3.2 and Lemma 3.2 that 

L(y | h) = inf {v(h*) : v e M* , v(g*) = y} 

where M* is the system of all probability measures on (R2, 0S2) such that v(T|h|) < 
< +oo. Now it is sufficient to use the following assertion (see e.g. MULHOLLAND, 

ROGERS [9]): Let A, . . . ,A be real Borel measurable functions on a measurable 
space ,0. Let r\ be a probability measure on Q such that f/(|/j|) < +<x>, i = 1,..., k. 
Then a probability measure r\' with a finite support exists such that i/'(/0 = *?(/*)> 
i = 1,..., k: 

Remark 3.2. It is possible to define other classes of unimodal distributions modified 
in various ways, e.g. the class U*i[x0, y0]. This class consists of all probability 
measures on (R2, Sf1) that coincide with measures from U*[x0, y0] in the first open 
quadrant relative to (x0, y0) and are arbitrary in the rest of the plane. 
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