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SOME PROPERTIES OF SEMIBASE PFAFFIAN FORMS
ON THE TANGENT BUNDLE

ToMAS KLEIN, Zvolen
(Received May 3, 1977)

Let M be a differentiable manifold. Let TM, or T*M denote the tangent, or the
co-tangent bundle of M. In the theory of the mechanical structures (see [1] p. 173)
the semibase forms on the bundle TM are of particular interest. In this paper we shall
describe some properties of these forms and of the related structures.

1. Let (x%), (x%, ¥), (x4 z;), (x%, ¥4, &, '), (%}, z;, %, 7;) be local charts on M, TM,
T*M, TTM, TT*M, respectively. Let A(TM) denote the graded algebra of exterior
differential forms on TM. Denote %(TM) the subalgebra of all semibase forms
on TM (see [1] p. 167). If w e A(TM) is a 1-form, then w € #(TM) if and only if,
with respect to a local coordinate system, we have

(1) o = f{x, y)dx*.

There is a bijection between the vector space of all semibase I-forms on TM and
the vector space of all morphisms TM — T*M. The morphism p determined by the
form (1) can be written locally

| p:(x,y) - (5 2= f(x. ).
Then the morphism
Px : TTM - TT*M

will be written locally in the form

x‘=x‘a Z:=fi(x,J’),

(2) Px of, of
ot =&, g =2t 2
¢ i 6’6 ayjﬂ

Definition 1. A semibase I-form o € A(TM) is called an L-form iff the corre-
sponding morphism p is linear.
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Locally, w is an L-form if and only if
= ,j(x) yj dxi .

2. Let Vor V* be a Liouville vector field on TM or T*M, respectively. Locally,
we can writte

V=y'oloy', V*=1z0/0z;.
Using (2) we get

. of
(3) p*(xi’ yi’ 0’ y') = (xi’ Z; = fi(x’ ,V), O’a—fl‘l yl> .

Theorem 1. The morphism p, maps a Liouville vector field V on TM into a Liou-
ville vector field V* on T*M if and only if the form w is homogeneous of the 1-st
order.

Proof. A semibase form w is homogeneous of the 1-st order iff its Lie derivative
Lyo = w, which is equivalent to

oy _
ayy fi-

Hence and from (3) the theorem follows.

Corollary. If @ is an L-form then p,(V) = V* (see [2]).
Let

X = d'(x, y) d[ox’ ‘+ b(x, ) 9|0y’

be a vector field on TM, w a semibase form (1) and p, the corresponding morphism
(2). We ask under which conditions we have

o p(X) = V*.

We can see easily that (4) holds iff

a=0, z;= gib’,
oy’
or equivalently, iff
o ;
. (5 =—=—b.
) =2

Definition 2. The vector fields X on TM which are mappzd into a Liouville vector
field V* on T*M we shall call Z-fields.
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Theorem 2. For the Z-fields from Definition 2 and for the form w from (1)

Liw=w, iw=0, i;dv=0, L;do=dw
hold. i

Proof.

Low = Y[2(f) dx' + £, d(@Z(x)] = 3 [aﬁf—j b d] —fidx =0
i i,j X
if we use (5).
iz0 = w(Z) = 0, because Z is a vertical field. From the relation

(see T1] p. 92) we get

if we use last relations.
Relation (6) can also be written as follows

(8) Lz do = iz ddo + diz do.

However ddw = 0, so izddw = 0. By the (7) i;dw = o, therefore (8) implies
L;dw = dw, q.e.d.

Definition 3. The form w from (1) will be called regular or singular at u € TM,
if the map p, is regular or singular at u.

3. Let w be the singular form and dim Ker p, be the constant function on TM.
In such a case the tangent spaces Ker p, form distribution . The distribution is
known to be integrable. As can be seen from (2) the distribution is vertical. The
equations (2) also imply that the vector field

Y = b 33y’

is a subfield of vertical distribution p if and only if

©) Yiyi_y.
Theorem 3. Vertical vector Y is a vector of distribution y if and only if iy dw = Q.

Proof. The exterior differentiation of @ from (1)is

.

(10 do=Ligpan+ & dy’ A dx'.
j j
0x dy
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Then

iydo = g—[-‘- bi dx!
ady’

which with respect to (9) demonstrates Theorem 3.

Corollary. Denote by A,(w) the set of all such tangent vectors Ye T,TM that
iydw = 0. Then
Ker py(h) = Aj(w) 0 T,TyM ,

where n : TM — M is a fiber projection.

Theorem 4. Let Y be a vector subfield of distribution y. Then the form o from (1)
is invariant with respect to vector field Y, i.e. Lyw = 0.

Proof. According to Theorem 3 iy dw = 0. The form w is semibase, the vector
field Y is vertical and therefore iyw = w(Y) = 0; moreover, according to (6) also
Lyw = 0, q.e.d.

Theorem 5. Let o be a closed form, M be connected manifold and X be a vector
field on TM. Then the form w is invariant with to respect to vector field X if and
only if iyw is a constant function.

Proof. If w is a closed form then dw = 0. Relation (6) implies that Lyw = diyw.
This further implies that Lyw = 0 (the form w is invariant) iff diyw = 0, i.e. iy is
a constant function and vice versa.

Corollary. If Y is a vertical vector field and w is a closed form then w is variant
with respect to the vector field Y.

Theorem 6. Let @ be a semibase 1-form on TM. Let
X = a'(x) o[ox*

be a vector field on M. Let 'X, or 1X* respectively, be a prolongation of vector
field X on TM, or T*M respectively. Then

pe(‘Xs) = "Xpwy ff [Liy(@)]s=0,
where he TM and X, e T,TM.

Proof. In local coordinates we get

dal
(11) 1X, = a' dJox* + P y' ooy’
oa’
IX:(") = ai alaxi - a_xifj a/az; .
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The following expression is obtained by calculation

@ el=g[Le s L g 2 e

ox! oy ox oxt?
From (2) we have

of; of; oa’
13 1X,) = a'8)ox' + (Lol + L1 2L yk) gfaz, .
(13 Pk = atefoxt + (Lo 4 T 2 0) e

Comparing (11), (12), (13) the statement of Theorem 6 is confirmed.
4. The equations (2) imply that

P«(T, TuM) < (h)TnhM

Let ;15 consider a vector field
X = ai(x) 9fox’,

i.e. a section M — TM. Let X,, = X(m) € T,,M. Let us denote map

Px: Ty, T,M = Tpx )TM
by pa«/X,,. Using canonic identification

Ty, TuM = T,M, T,y ,TaM = TAM
we obtain the linear morphism
Pa/Xm: T,M - T*M

which can be locally expressed according to (2) as follows

(14) P*/Xixi=xi, zi=_a_&(x’_a(£))y1_
dy’
The linear map (14) determines the semibase L-form on TM
(15) B = (w]X) = if_t(’;‘j‘_(x» Hdx.
y

Theorem 7. Let V = y' 8[dy* be the Liouville vector field on TM. Let X be a vector

field by means of whwh the form (15) was formed. Then the following is true for
any me M:

(iy, da))xm = ﬁxm .
Proof. By contraction of form (10) we obtain
1 e =Tix)) = ) yiaxt.
y
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Comparing (15) and (16) the statement of Theorem 7 is confirmed.
By exterior differentiation of the form (15) we obtain

2 2 P!
(17) dB = f{x, a) O*f{(x, ‘:) . ﬁa_k ydxk A dxt + Mdy’ A dx!
oy’ ox* oyl oyt ox oy’

From (10) and (17) we get:

Theorem 8. Form df belongs to class 2n on TM if and only if form dw is a 2-form
of class 2n along the section X : M — TM. The form dw — dpf is semibase along
the field X.

Corollary. Let us recall that symplectic structure on TM (see [1] p. 123) is deter-
mined by a closed differential 2-form 6 € A*(TM) of a constant class 2n. In our
case the symplectic structure on TM is determined by form dp iff dw is the sym-
plectic form along section X : M — TM.

Theorem 9. Let Y = ¢! [0x’ + b’ 00y’ € Tx, TM. Let iy or i, be the map Y —
= iy df or Y 1> iy dw. Then i)(Y) — i (Y) is a semibase form.
Proof.

2 2 I
(18) i,: Yi—> 0 fi(x’ a) + 8 fi("’ a) ) da al(c* dx’ — ' dx’) +
‘ g oy’ ox* oy’ oyt  ox*

+ aj,.(x,.a) bl dxt — 6f,.(x,' a) cdy),
ay’ oy’

(19) i,:Yi—> M(ci dx! — ¢'dx’) + M (b7 dx' — c'dy’)).
0x’ oy’
Comparing (18) and (19) we obtain confirmation of the statement of Theorem 9.

Theorem 10. Let X be a projectable vector field on TM. Then dixp is a semlbase
Sorm if and only if dixf = 0.

Proof. Let us remember that vector field X on TM is projectable iff 7, X is a vector
field on M, i.e. locally

(20) X = di(x) 8/ox' + b(x, y) ooy’ .

By contraction of form (15) by the vector field (20) we obtain

lxﬂ"ii‘
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Therefore

(21) digp = . + el . oa’ ylat + s . @jy" dx* + i a'dy*.
- L\oy’ ay* ayl oyt ox* oy ox* dy*

Form diyf is semibase iff

(22) Sigiy.
oy*

By differentiation (22) we obtain

2 2 1 i
(23) 0N 4 Ofs 0a) i i ba_,
oy’ ox*  ayl oyt ox* oy’ oxk

By c'omparing (21) and (23) the statement of Theorem 10 is obtained.

Theorem 11. If w is a semibase form and X is a projectable vector field on TM
then Lyw is a semibase form.

Proof. For the form w from (1) and vector field X from (20) the following is true:

. of; i, i s
24 diyw = al + dx/ + = a* dy’
@4 x (6x’ i 8xf) oy’ Y
and
(25) iydo = (Lia - Yi gy Yip) g - Tigigy.
6xf ox* oy’ oy’

By substituting from (24) and (25) into (6) we get the result that Lyw is semibase
form, q.e.d.

Theorem 12. Let X be the vector field on TM. Then Lyw is a semibase form for
any semibase form w if and only if X is a projectable vector field.

Proof. The contraction of any form  from (1) along a vector field
X = a'(x, y) 0[ox' + bi(x, y)6[oy' on TM
is
ixo = fi(x,y) a'(x, y).

By exterior differentiation we obtain

(26) dixm=(§% al + f; )d’+(af‘ a' + f; )d’

The form ix do for any vector field X on TM can be expressed in form (25). From
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(6) and from the addition of (25) and (26) we get that the form Ly is semibase on
™ iff

i
fié“z‘. =0.
ay’

This is possible for all f; iff a’ are functions of x only, i.e. if the vector field X on TM
is projectable, q.e.d.
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