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Časopis pro pěstování matematiky, roč. 104 (1979), Praha 

NOTE ON OPERATORS PRODUCED BY SESQUILINEAR FORMS 

MIROSLAV SOVA, Praha 

(Received February 28, 1977) 

The purpose of this note is to show some "interior" properties characterizing the 
operators produced by certain sesquilinear forms which are frequently studied in the 
theory of elliptic operators. 

We shall denote by H an arbitrary complex Hilbert space with a norm || • |J and 
scalar product <.,.>. Further, let L+(H) be the set of all linear operators from II 
into itself. The complex number field will be denoted by C. 

Let A G L+(H). The operator A is called nondissipative if Re <Ax, x> ^ 0 for 
any xe*D(A). 

Let A G L+(H). The operator A will be called special if 

(A-.) for every x, ye H for which there exists a sequence xk e D(A)9 k e {1, 2,...} 
such that xk -> x, the sequence Re {Axk9 x&> is bounded and (Axk9 z> -* 
-• <y, z> for any z e D(A)9 we have x G D(A) and Ax = y, 

(Bt) | lm <Ax, x>| S d[ | l le <Ax, x>| 4- | |* | | 2] for any x e D(A) with a fixed constant 
d^O. 

Let F b e a linear space and S a mapping of the set V x Finto C. The mapping S 
is called a sesquilinear form on the space Fif 

S(a 1x 1 4- a 2 x 2 , y) = «j S(x, y) + a 2 S(x2, y) , 

S(x, atyt + a 2 y 2 ) = a4 S(x9 yx) + a 2 S(x, y2) 

for any x, >>, xu x2, y M y 2 e Fand a l 5 a 2 e C. 

Let A e L+(H). The operator _4 will be called sesquilinearizable (or produced by 
a sesquilinear form) if there exist a Hilbert space F and a sesquilinear form S on F 
such that 

(A2) Fis a dense subset of H, 

(B2) there exists a positive constant # > 0 such that |x | | K ^ q\x\ for any x 6 F, 
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(C2) there exists a nonnegative constant M ^ 0 such that |S(x, x)| g Af Jjxj|̂  for 
every x G V9 

(D2) there exists a positive constant m > 0 such that |Re S(x, x)| ^ w||x||^- for every 
xeV9 

(E2) D(A) s V9 

(F2) <Ax, z> + <x, z> = S(x, z) for every x e D(A) and zeV9 

(G2) if x e V and there exists yeH such that S(x, z) = (y, z) for any z e V, then 
x e D(A). 

Remark. A very closely related notion is that of "regularly accretive" operators 
used in [2]. More precisely, an operator A e L+(H) is regularly accretive if and only 
if there is a constant coe R such that A + col is nondissipative and sesquilinearizable. 

Lemma 1. Let V be a pre-Hilbert space and S a sesquilinear form on V. If 
|s(x, x)| = K||x|2 for any xeV9 then |S(x, j;)| = 2K||x|| . \\y\\ for any x9yeV 

Proof. See [1], Chap. 12, Cor. 3.2. 

Lemma 2. Let Vbe a Hilbert space and S a sesquilinear form on V If there exist 
constants 0 < m = M such that w(|x||2 _ S(x, x) g M||x||2for any x e V, then for 
every $ e V*, 

(a) there exists a unique x e Vsuch that #(z) = S(z9 x) for any z e V9 

(b) there exists a unique x e V such that 4>(z) = S(x, z) for any zeV. 

Proof. An easy consequence of the Riesz theorem on the representation of con­
tinuous linear functional on Hilbert spaces. 

Theorem 1. Let A e L+(H). If the operator A is nondissipative and special, then it 
is sesquilinearizable. 

Proof. The symbols (At)9 (Bx) and (A2)~(F2) refer to the defining properties of 
special and sesquilinearizable operators, respectively. 

Let us now define 

(1) |x| = [|Re (Ax9 x>| + \\xfY11 for x e D(A) , 

(2) (x, y) = i[04x, j;> + <x, Ay}] for x9yeD(A). 

It is easy to see from (l) and (2) with respect to the nondissipativity of A that for 
every x, xi9 x2, y e D(A) and <xl9 a2 e C it is 

(3) | - U i i 
(4) H2 = (x,x), 
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(5) (a1xl + a2x2, y) = a^x, y) + a2(x2, y) , 

(6) (x,y) = (^). 

The statements (3) -(6) show that 

(7) D(A) is a pre-Hilbert space with the norm | • | and the scalar product (•,•). 

Let us now choose a fixed constant d for which (Bt) holds, i.e. 

(8) |lm <,4x, x>| ^ d[Re <.Ax, x> + ||x||2] for any x e D(A) . 

We obtain easily from (1) and (8) that 

(9) |<^x, x>| = [(Re <^x, x» 2 + (Im (Ax, x» 2 ] 1 / 2 ^ 

. ^ 2[\Re {Ax, x>| + |lm <^x, x>|] ^ 

^ 2[|Re <^x, x>| + d|Re <.Ax, x>| + d||x|2] ^ 

^ 2(1 + d) [|Re <_4x, x>| + |x||2] = 2(1 + d) |x|2 for every x e D(A) . 

Further, let us take 

(10) K = 2(1 + d) . 

It is clear from (7), (9) and (10) that D(A), <AL,. > and K fulfil the assumptions of 
Lemma 1 and consequently 

(11) |<^x, y>| ^ 2(1 + d) \x\ \y\ for every x,yeD(A). 

Let us now define Fas the completion of the pre-Hilbert space D(A) defined by (7). 
Then 

(12) Vis a Hilbert space (with the norm || • ||r and the scalar product <.,. >K), 

(13) D(A) is dense in the space V. 

Moreover, (3) implies that we can immerse the space V into H in a natural way 
so that 

(14) | |x |K£ ||x| for any x e V. 

It follows easily from (Aj that 

(15) D(A) is dense in the space H. 

Now we conclude from (13) and (15) that 

(16) V is a dense subset of H. 

We obtain easily from (1), (3), (9), (12) and (13) that there exists a unique sesquili-
near form S on Vsuch that . 

(17) S satisfies the assumptions of Lemma 2 with M = 2(1 + d) and m = 1, 

(18) S(x, z) =- <,4x, z> + <x, z> for any x e D(A) and zeV. 
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Now we shall prove that 

(19) for any y e H, there exists x e D(A) so that Ax + x = y. 

Let y e H and let l(z) = <>>, z> for any zeH. Moreover, let # be the restriction 
of / to V. It follows from (14) that $ e V*. By (17), we can apply Lemma 2 and 
hence there exists x e V so that 

(20) S(x, z) = "5(z) = <>;, z> for any zeV. 

By (16), there exists a sequence xk9 he {1, 2,. . .}, such that 

(21) xk e D(A) for any k e {1, 2,...} and xfc -• x in the space V. 

By (18), (20) and (21) we obtain 

(22) <xfc, z> + (Axk, z> -+ <j>, z> for every Z G K 

Further, we see from (14) and (21) that 

(23) xk -* x in H. 

Moreover, (11) and (21) imply that 

(24) <Axfc, xk> is a bounded sequence. 

Now we see easily from (13), (16) and (21) — (24) that (Ax) applies to A which proves 
(19). 

Summing up (12), (13), (15)—(19) we see that the operator A is sesquilinearizable, 
which proves Theorem 1. 

Theorem 2. Let A e L+(H). If the operator A is sesquilinearizable, then it is 
special. 

Proof. The symbols (Ax), (Bj), (Cx) and (A2)—(F2) refer to the defining proper­
ties of special and sesquilinear operators, respectively. 

We shall first prove 

(1) R(I + A) = H. 

Indeed, let yeH and let us define <P(z) = <y, z>. Then (B2) implies # e V*. 
By (C2) and (D2) we can apply Lemma 2 and hence there exists x e Vsuch that 

(2) S(x, z) = #(z) = <>>, z) for any zeV 

We see from (E2)—(G2) that (2) implies x e D(A) and x 4- Ax == y which verifies 

Further, we need to prove that 

(3) D(A) is dense in V. 
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Let this be not true. Then there exists ve Vsuch that 

(4) v # 0 and <t>, x}v = 0 for any x e D(A). 

By Lemma 2, there exists weV such that 

(5) <t;, z>K = S(w9 z) for any zeV. 

It follows from (4) and (5) that 

(6) S(x, w) = 0 for any x e D(A). 

Hence by (F2) we see from (6) that <x + ALx, w> = 0 for any x e D(A) and con­
sequently, by (1), w = 0. This implies by (5) that v = 0 which contradicts (4). Hence 
(3) is true. 

We shall now prove that 

(7) |lm (Ax, x>| = 0 - ^ (M + - ) ) (|Re <Ax, x}\ + \\x\\2) 

for any x e D(A). 

Indeed, we have by (C2) and (F2) that for any x e D(A) 

|<Ax,x> + |x||2| = M||x||2. 

Hence for x e D(A) 

\<Ax9x>\- \\x\\2 ̂  M\\x\\2 

which implies according to (B2) 

(8) \(Ax, *>| = M\\x\v + \xf = M\\x\v + i \\x\\2
r = (M + I ) \\x\\v 

for any x e D(A). 
On the other hand, 

(9) |<4x, x>| = [(Re <Ax9 x» 2 + (Im <Ax9 x » 2 ] ^ 2 £ 

= i - [|Re <4x, x>| + |lm <.Ax, x>|] = 

V2 

£ - — |Re <_4x, x>| + — jlm <^x, x>| for any x e D(A). 

yj2 y/2 

Consequently, (8) and (9) yield 

(10) |lm <4x, x>| g ^2 \<Ax9 x>| + |Re <^x, x>| = 

g |Re <,4x, x>| + V2 (M + -") ||x||£ for any x 6 D(,4). 
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Using now (D2) and (F2) we obtain from (10) that 

|lm <4x, x>| g |Re (Ax, x>| + --? (M + -\ (|Re <^x, x>| + |x|2) g 

g |~1 + ^ lM + 1)1 (|Re <^x, x>| + |x|2) 

which verifies (7). 
Suppose that 

(11) x, yeH9 xkeD(A), xfc -> x, Re <_4xfc, xfc> is a bounded sequence and 

<-4xfc, z> -• <y, z> for any z e 0(A). 

Since by the assumption (11) the sequences Re <-4xfc, xfc> and ||xfc|| are bounded we 
conclude from (D2) and (F2) that 

(12) the sequence xfc is bounded in V. 

The assumption <̂ 4xfc, z> -» <>>, z> for any z e D(A) and xfc -> x (from (11)) may 
be rewritten by (F2) in the form 

(13) S(xfc, z) -» <j, z> + <x, z> for any z e D(A). 

On the other hand, by (12) and (C2) we have 

(14) |S(xfc, z)\ = K(sup ||xfc|F) \\z\\v for any k e {1, 2,...} and y e V. 
fc 

Applying the Banach-Steinhaus theorem, we obtain from (3), (13) and (14) that 

(15) S(xfc, z) -> <>>, z> for every z e V. 

Next we shall prove that 

(16) the sequence xfc is weakly fundamental in the space V. 

Indeed, let <P e V*. By (C2), (D2) and Lemma 2 there exists z e Vsuch that #(x) = 
= S(x, z) for eveiy xeV. Hence (15) implies #(xfc) -» (y, z> which proves (16). 

On the other hand, since Vis assumed to be a Hilbert space, it follows from (16) 
that 

(17) the sequence xfc is weakly convergent in V, i.e. there exists x0 e V such that 
xfc -> x0 weakly in V. 

Using (A2), (B2), we deduce easily from (18) that 

(18) xfc -> x0 weakly in H. 

But due to (11) and (18), it is necessarily 

(19) x0 = x. 
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It follows easily from (17) and (19) that 

(20) S(xk, z) -+ S(x, z) for any zeV. 

The pгecбding results (13) and (20) imply 

(21) S(x, z) = (y, z> + <x, z> for every zeV. , • 

Using (G2), we see ftom (21) that x є D(A) and using (A2) and (F2) we conclude 
that, moreover, Ax + x = y + x. This result enables us to state that 

(22) under the assumption (11), x є D(Ä) and Ax = y. 

The proof is complete since the properties (Aj) and (B )̂ are verified in (22) and (7). 

Proposition. Every selfadjoint operator is special. 

Proof. First we shall verify (Aj). 

Let x, z є Я, xk є D(A), xk -> x and <-4xfc, y} -• <z, y} for every y e D(A). 
Then <-4xfc, y} = <xл, Ay} and hence <x, Ay} = <z, y} foґ every y e D(A). This 

implies that x є D(A*) and A*x = z. But this is in fact x є D(A) and Ax = z. 
The condition (Bj) is trivial since Im <Лx, x> = 0 for any x є D(Ä). 
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