Časopis pro pěstování matematiky

Gary Chartrand; Farrokh Saba; Hung Bin Zou
Edge rotations and distance between graphs

Časopis pro pěstování matematiky, Vol. 110 (1985), No. 1, 87--91
Persistent URL: http://dml.cz/dmlcz/118225

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

EDGE ROTATIONS AND DISTANCE BETWEEN GRAPHS

Gary Chartrand, Farrokh Saba, Hung-Bin Zou, Kalamazoo

(Received November 27, 1983)

INTRODUCTION

In [1] Zelinka introduced the following definition of distance between two graphs of the same order. Let G_{1} and G_{2} be two graphs of order p. Then the distance $\delta\left(\boldsymbol{G}_{1}, \boldsymbol{G}_{2}\right)$ between G_{1} and G_{2} is $n(0 \leqq n \leqq p-1)$ if $p-n$ is the order of a largest graph that is an induced subgraph of both G_{1} and G_{2}.

Zelinka showed that on the family of graphs having a fixed order, the above distance function δ produces a metric space. He further showed for graphs G_{1} and G_{2} of order p that $\delta\left(\boldsymbol{G}_{1}, \boldsymbol{G}_{2}\right) \leqq p-1$ and $\delta\left(\boldsymbol{G}_{1}, \boldsymbol{G}_{2}\right)=\delta\left(\overline{\boldsymbol{G}}_{1}, \overline{\boldsymbol{G}}_{2}\right)$, where $\overline{\boldsymbol{G}}$ denotes the complement of \boldsymbol{G}.

In this paper, we introduce a new distance function defined on graphs having the same order and the same size (number of edges).

EDGE ROTATIONS AND TRANSFORMATIONS

We say that a graph G can be transformed into a graph H by an edge rotation if G contains distinct vertices u, v and w such that $u v \in E(G), u w \notin E(G)$ and $H \cong$ $\cong G-u v+u w$. In this case, G is transformed into H by "rotating" the edge $u v$ of G into $u w$. Observe that a graph G can be transformed into some graph H by an edge rotation if and only if G is neither complete nor empty.

Figure 1 shows graphs G, H_{1} and H_{2}. Note that G can be transformed into H_{1} by an edge rotation ($x y$ is rotated into $x z$). Also, G can be transformed into H_{2} by an edge rotation ($x w$ is rotated into $x z$). Further observe that $G \neq H_{1}$ and $G \cong H_{2}$.

Figure 1

It is immediate that a graph G can be transformed into a graph H by an edge rotation if and only if H can be transformed into G by an edge rotation. More generally, we say simply that G_{1} can be transformed into G_{2}, written $G_{1} \rightarrow G_{2}$, if either (1) $G_{1} \cong G_{2}$, or (2) there exists a sequence

$$
G_{1} \cong H_{0}, H_{1}, \ldots, H_{n} \cong G_{2}(n \geqq 1) \text { of graphs such that } H_{i}
$$

can be transformed into H_{i+1} by an edge rotation for $i=0,1, \ldots, n-1$. It is obvious that the relation "can be transformed into" is an equivalence relation on the set of all graphs. Moreover, if G_{1} and G_{2} are graphs for which $G_{1} \rightarrow G_{2}$, then clearly G_{1} and G_{2} have the same order (the same number of vertices) and the same size (the same number of edges). It is perhaps less clear that the converse of the preceding implication is also true.

Proposition 1. Let G_{1} and G_{2} be graphs having the same order and the same size. Then $G_{1} \rightarrow G_{2}$.

Proof. If $G_{1} \cong G_{2}$, then $G_{1} \rightarrow G_{2}$; so we may assume, without loss of generality, that $G_{1} \not ⿻ G_{2}$. Suppose that $G_{1}\left(\right.$ and $\left.G_{2}\right)$ has order p and size q (necessarily $p \geqq 4$ and $q \geqq 2$). Without loss of generality, we assume that $V\left(G_{1}\right)=V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots\right.$ $\left.\ldots, v_{p}\right\}$.

For the complete graph K_{p} having the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, we say that an edge $v_{a} v_{b}(a<b)$ is less than an edge $v_{c} v_{d}(c<d)$, written $v_{a} v_{b}<v_{c} v_{d}$, if either (i) $a<c$ or (ii) $a=c$ and $b<d$. This produces a linear ordering of the edges $e_{i}, i=$ $=1,2, \ldots,\binom{p}{2}$, of K_{p}, where

$$
\begin{equation*}
v_{1} v_{2}=e_{1}<e_{2}<e_{3}<\ldots<e_{\binom{p}{2}}=v_{p-1} v_{p} . \tag{1}
\end{equation*}
$$

We say that the weight of the edge e_{i} is i. Further, if G is a graph having the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, then the weight of G is defined to be the sum of the weights of its edges, where the weights are determined by (1).

Define the graph H to have the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and the q smallest edges of K_{p} as defined in (1), i.e., $E(H)=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$. Note that H has weight $\sum_{i=1}^{q} i$. We now show that $G_{1} \rightarrow H$. Suppose, to the contrary, that G_{1} cannot be transformed into H. Then let F be a graph with $V(F)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and minimum weight w such that $G_{1} \rightarrow F$. Therefore, $w>\sum_{i=1}^{q} i$. This implies that there exist edges $v_{a} v_{b}$ and $v_{c} v_{d}$ such that $v_{a} v_{b} \notin E(F), v_{c} v_{d} \in E(F)$ and $v_{a} v_{b}<v_{c} v_{d}$. Let $F^{*}=F+v_{a} v_{b}-v_{c} v_{d}$. We show that $F \rightarrow F^{*}$. Since $G_{1} \rightarrow F$, this implies that $G_{1} \rightarrow F^{*}$. Howeer, since F^{*} has smaller weight than F, a contradiction is produced, yielding the desired result that $G_{1} \rightarrow H$. We consider two cases.

Case 1. Suppose that $a=c$. Thus $b<d$. By rotating the edge $v_{c} v_{d}$ into $v_{a} v_{b}$, the graph F is transformed into F^{*}.

Case 2. Suppose that $a<c$. If $b=d$ or $b=c$, then, as in Case 1 , we may rotate the edge $v_{c} v_{d}$ into $v_{a} v_{b}$ so that F is transformed into F^{*}. Assume, then, that $b \neq d$ and $b \neq c$ so that v_{a}, v_{b}, v_{c} and v_{d} are four distinct vertices. If $v_{b} v_{d} \notin E(F)$, then we may rotate $v_{c} v_{d}$ into $v_{b} v_{d}$, and then rotate $v_{b} v_{d}$ into $v_{a} v_{b}$, thereby concluding that F can be transformed into F^{*}. If $v_{b} v_{d} \in E(F)$, then we rotate $v_{b} v_{d}$ into $v_{a} v_{b}$, after which we rotate $v_{c} v_{d}$ into $v_{b} v_{d}$, again showing that F can be transformed into F^{*}.

We now have that $G_{1} \rightarrow H$. Likewise, $G_{2} \rightarrow H$. From this, it follows that $G_{1} \rightarrow G_{2}$.

DISTANCE BETWEEN GRAPHS

Let G_{1} and G_{2} be two graphs having the same order and the same size. We define the distance $d\left(G_{1}, G_{2}\right)$ between G_{1} and G_{2} as 0 if $G_{1} \cong G_{2}$ and, otherwise, as the smallest positive integer n for which there exists a sequence $H_{0}, H_{1}, \ldots, H_{n}$ of graphs such that $G_{1} \cong H_{0}, G_{2} \cong H_{n}$, and H_{i} can be transformed into H_{i+1} by an edge rotation for $i=0,1, \ldots, n-1$. By Proposition 1, this "distance" is a welldefined concept. Further, if $\mathscr{G}_{p, q}$ is the set of all graphs having order p and size q, for some fixed integers p and q, then $\left(\mathscr{G}_{p, q}, d\right)$ is a metric space.

We make the following observation concerning complements of graphs.
Proposition 2. Let G_{1} and G_{2} be two graphs having the same order and the same size. Then

$$
d\left(G_{1}, G_{2}\right)=d\left(\bar{G}_{1}, \bar{G}_{2}\right) .
$$

Proof. If $d\left(G_{1}, G_{2}\right)=0$ then $G_{1} \cong G_{2}$, implying that $\bar{G}_{1} \cong \bar{G}_{2}$ and $d\left(\bar{G}_{1}, \bar{G}_{2}\right)=0$. Assume then that $d\left(G_{1}, G_{2}\right)=n \geqq 1$. Hence there exists a sequence

$$
G_{1} \cong H_{0}, H_{1}, \ldots, H_{n} \cong G_{2},
$$

where H_{i} can be transformed into H_{i+1} by an edge rotation for $i=0,1, \ldots, n-1$, where, say, $H_{i+1}=H_{i}-u_{i} v_{i}+u_{i} w_{i}$. Observe that $\bar{H}_{i+1}=\bar{H}_{i}-u_{i} w_{i}+u_{i} v_{i}$, i.e., \bar{H}_{i} can be transformed into \bar{H}_{i+1} by an edge rotation. Thus the sequence

$$
\begin{equation*}
\bar{G}_{1} \cong \bar{H}_{0}, \bar{H}_{1}, \ldots, \bar{H}_{n} \cong \bar{G}_{2} \tag{2}
\end{equation*}
$$

implies that $d\left(\bar{G}_{1}, \bar{G}_{2}\right) \leqq d\left(G_{1}, G_{2}\right)=n$.
Now by applying the above technique to the sequence (2), we have $d\left(\overline{\bar{G}}_{1}, \overline{\bar{G}}_{2}\right) \leqq$ $\leqq d\left(\bar{G}_{1}, \bar{G}_{2}\right)$ or

$$
n=d\left(G_{1}, G_{2}\right) \leqq d\left(\bar{G}_{1}, \bar{G}_{2}\right)=n
$$

producing the desired result.
Next we show that any nonnegative integer is the distance between some pair of graphs.

Proposition 3. For every nonnegative integer n, there exist graphs \boldsymbol{G}_{1} and \boldsymbol{G}_{2} such that $d\left(G_{1}, G_{2}\right)=n$.
Proof. If $n=0$, then for every graph $G, d(G, G)=0$, so take $G_{1}=G_{2}=G$. Let $n \geqq 1$ be given. Let $G_{1}=(n+1) K_{2}$ and $G_{2}=K(1, n+1) \cup n K_{1}$, so that G_{1} and G_{2} are graphs of order $2 n+2$ and size $n+1$. Suppose that $E\left(G_{1}\right)=\left\{u_{0} v_{0}\right.$, $\left.u_{1} v_{1}, \ldots, u_{n} v_{n}\right\}$. Let $H_{0}=G_{1}$ and for $i=0,1, \ldots, n-1$, define

$$
H_{i+1}=H_{i}-u_{i+1} v_{i+1}+u_{0} v_{i+1}
$$

Note that $H_{n} \cong G_{2}$ so that $d\left(G_{1}, G_{2}\right) \leqq n$. On the other hand, every edge rotation of a graph G produces a graph H such that $\left|\operatorname{deg}_{G} v-\operatorname{deg}_{H} v\right| \leqq 1$ for every vertex v of G_{1}. Since G_{1} is 1 -regular and G_{2} contains a vertex of degree $n+1$, at least n edge rotations are required to transform G_{1} into G_{2}. Thus $d\left(G_{1}, G_{2}\right) \geqq n$ and the result follows.

In order to present an upper bound for the distance between graphs (having the same order and size), we introduce a new concept. For nonempty graphs G_{1} and G_{2}, we define a greatest common subgraph of G_{1} and G_{2} as any graph G of the maximum size without isolated vertices that is a subgraph of both G_{1} and G_{2}.

While every pair G_{1}, G_{2} of nonempty graphs has a greatest common subgraph, such a subgraph need not be unique. For example, the graphs G_{1} and G_{2} of Figure 2 (of order 7 and size 6) have three greatest common subgraphs, namely G, G^{\prime} and $G^{\prime \prime}$. Although these subgraphs are all different, they, of course, possess the same maximum size, namely 3 , in this case.

0

Figure 2
The main reason for introducing greatest common subgraphs lies in the following result.

Proposition 4. Let G_{1} and G_{2} be graphs having order p and size $q \geqq 1$, and let G be a greatest common subgraph of G_{1} and G_{2}, where G has size s. Then $d\left(G_{1}, G_{2}\right) \leqq$ $\leqq 2(q-s)$.

Proof. If $s=q$, then $G_{1} \cong G_{2}$ and $d\left(G_{1}, G_{2}\right)=0$. Thus, we assume that $1 \leqq$ $\leqq s<q$. Let the vertices of G_{1} and G_{2} be labeled $v_{1}, v_{2}, \ldots, v_{p}$ so that subgraphs of G_{1} and G_{2} isomorphic to G are identically labeled. Since $G_{1} \neq G_{2}$, the graph G_{1} contains an edge $v_{i} v_{j}$ that is not in G_{2} and G_{2} contains an edge $v_{k} v_{l}$ that is not in G_{1}.

Suppose that $v_{j}=v_{k}$. Then G_{1} can be transformed into $G_{1}^{\prime}=G_{1}-v_{i} v_{j}+v_{j} v_{l}$ by an edge rotation and $d\left(G_{1}, G_{1}^{\prime}\right)=1$. Hence we may assume that $\left\{v_{i}, v_{j}\right\} \cap$ $\cap\left\{v_{k}, v_{l}\right\}=\emptyset$.

Suppose that at least one of v_{i} and v_{j} is not adjacent in G_{1} to at least one of v_{k} and v_{i}; say $v_{i} v_{k} \notin E\left(G_{1}\right)$. Then G_{1} can be transformed into $G_{1}^{*}=G_{1}-v_{i} v_{j}+v_{i} v_{k}$ by rotating $v_{i} v_{j}$ into $v_{i} v_{k}$, and G_{1}^{*} can be transformed into $G_{1}^{* *}=G_{1}^{*}-v_{i} v_{k}+v_{k} v_{l}$ by rotating $v_{i} v_{k}$ into $v_{k} v_{l}$. Thus $d\left(G_{1}, G_{1}^{* *}\right) \leqq 2$.

Assume then that each of v_{i} and v_{j} is adjacent to both v_{k} and v_{l}. The graph G_{1} can be transformed into $G_{1}^{\prime}=G-v_{i} v_{k}+v_{k} v_{l}$ by rotating $v_{i} v_{k}$ into $v_{k} v_{l}$, and G_{1}^{\prime} can be transformed into $G_{1}^{\prime \prime}=G_{1}^{\prime}-v_{i} v_{j}+v_{i} v_{k}$ by rotating $v_{i} v_{j}$ into $v_{i} v_{k}$. Therefore, $d\left(G_{1}, G_{1}^{\prime \prime}\right) \leqq 2$.

Hence, in any case, G_{1} can be transformed into $H_{1}=G_{1}-v_{i} v_{k}+v_{k} v_{l}$ and $d\left(G_{1}, H_{1}\right) \leqq 2$. The graphs H_{1} and G_{2} have $s+1$ edges in common. Proceeding as above, we construct a graph H_{2} such that $d\left(G_{1}, H_{2}\right) \leqq 4$, and H_{2} and G_{2} have $s+2$ edges in common. Continuing in this manner, we construct a graph $H_{q-s}=G_{2}$ such that $d\left(G_{1}, G_{2}\right) \leqq 2(q-s)$.

The bound presented in the previous result cannot be improved in general, for if $n \geqq 1$, define

$$
G_{1}=K_{2 n} \cup \bar{K}_{4 n^{2}-4 n} \quad \text { and } \quad G_{2}=\left(2 n^{2}-n\right) K_{2} .
$$

Observe that each of G_{1} and G_{2} has order $4 n^{2}-2 n$ and size $q=2 n^{2}-n$. In this case, G_{1} and G_{2} have a unique greatest common subgraph $G=n K_{2}$, which has size $s=n$. Therefore,

$$
2(q-s)=2\left[\left(2 n^{2}-n\right)-n\right]=4 n^{2}-4 n .
$$

The graph G_{2} is 1-regular, while G_{1} contains $4 n^{2}-4 n$ isolated vertices. Therefore, $d\left(G_{1}, G_{2}\right) \geqq 4 n^{2}-4 n$. By Proposition $4, d\left(G_{1}, G_{2}\right) \leqq 2(q-s)=4 n^{2}-4 n$, so that $d\left(G_{1}, G_{2}\right)=2(q-s)$.

Reference

[1] B. Zelinka: On a certain distance between isomorphism classes of graphs. Časopis Pěst. Mat. 100 (1975) 371-373.

Authors' address: Western Michigan University, Kalamazoo, Michigan 49008, USA.

