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Časopis pro pěstování matematiky, roč. 111 (1986), Praha 
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Dedicated to Professor Jaroslav Kurzweii on the occasion of his sixtieth birthday 

(Received August 10, 1985) 

1. INTRODUCTION 

Let R denote the real field < and let [a, b) be a closed-open interval of R with 
— oo < A < fe g oo. Let C denote the complex field; if X e C we write X = \x + iv. 
The function spaces of complex-valued locally integrable and locally absolutely 
continuous functions on [a, b) are denoted respectively by Lloc [a, b) and AC]oc [a, b). 

Let p, q and w be given coefficients satisfying the following basic conditions 

(1.1) (i) p,q,w: [a, b) -> R and are Lebesgue measurable 
(ii) p{x) > 0 (almost all x e [a, b)) and p~1( = ljp) eLloc[a, b) 

(in) q G Lloc[ab) 
(iv) w(x) > 0 (almost all x e [a, b)) and w e L]oc[a, b). 

In this paper we are concerned with properties of the symmetric linear quasi-
differential equation (the so-called generalised Sturm-Liouville equation) 

(1.2) -(pyj + qy = Xwy on [a, b) 

or, equivalently, the symmetric linear quasi-differential expression 

(1.3) w-^-pf')' + qf) on [a, b) . 

Here, and to follow, a prime ' denotes classical differentiation. 
In (1.2) a solution y: [a, b) -• C and both y and py' e AC]oc[a, b); similarly for/ 

in (1.3). 
Let L2

w[a, b) denote the Lebesgue function space of complex-valued measurable 
functions f satisfying 

f V*) i/Mi2 a* =. rW|/|-<co. 
Ja J ft 
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The original classification of (1.2), equivalently (1.3), as in the limit-point or limit-
circle condition at b in L2

w[a, b) is due to Weyl [13]; see also Titchmarsh [12]. 
• The strong limit-point and Dirichlet conditions for (1.2) and (1.3) were named 
about the time of the paper by Everitt, Giertz and Weidmann [7], although earlier 
results are also significant. See also the results in Everitt, Giertz and McLeod [6]; 
Kalf [11]; Everitt [3]; Everitt and Wray [9]. In particular the work of Kalf [11] is 
important for the results of this present paper. 

As far as notations and definitions are concerned the most suitable reference is 
Everitt [4, section 3.1]. The Green's formula for both (1.2) and (1.3) may be written 
as, for all [a, ff\ <= [a, b) 

(«) (1.4) \'{g M[f] - M[g]f} = [fg] (/?) - [fg] 

valid for all / , g, pf, pg' e ACloc[a, b) where 

(1.5) A/[ / ] := -(pf)' + qf on [a, b) 

(1.6) [fg](x):=(pg'.f-g.Pf)(x) (xe[a,b)). 

Similarly the Dirichlet formula takes the form 

(1.7) f \pg'. f + qgf) =pg'.f\+ P M | > ] f. 
J a \a J a 

Let A c L2
w[a, b) denote the linear manifold defined by 

(1.8) A := {f: [a, b) - C\ (i) f and pf' e ACloc[a, b) 
(ii) f<mdw~l M[f]eLl[a,b)} . 

The following definitions are then made; see [4, section 3.1]: 
(i) the differential expression M is limit-point (LP) at the end-point b in L2,[a, b) if 

(1.9) lim [fg] (/?) = 0 ( a l l f geA ) 

(ii) M is strong limit-point (SLP) at b in L^fa, b) if 

(1.10) lim (pg' .f) (P) =-= 0 (all f, g e A) 

(iii) M is Dirichlet (D) at b in L2
w[a, b) if 

(1.11) p1/2f and |g|1/2feL2[a,fc) (al l feA) . 

The LP condition (1.9) is motivated by consideration of the Green's formula (1.4). 
Similarly the SLP and D conditions (1.10 and 11) are connected with the Dirichlet 
formula (1.7). 
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2. CLASSIFICATION RESULTS 

The LP classification of the differential expression M at b in L2
w[a, b), and so of 

the differential equation (1.2), is dependent only on the coefficients p, q and w; 
see [4, section 3.1]. The papers [11], [3] and [9] are particularly concerned with 
finding conditions on these coefficients to place M in both the SLP and D conditions 
at b in l3w[a, b); this classification of M is particularly important in applications. 

The first theorem presented below overlaps in part with the main theorem of 
Kalf [4]. However a separate proof is given here since the details given are required 
in the proof of subsequent results, which are not included in the Kalf proof. 

We start a proof of a lemma due to Kalf, see [11, page 204]; the proof given here 
is more appropriate for the methods of this paper. 

Lemma. Let the coefficients p, q and w satisfy basic conditions (i) to (iv) 0/(1.1). 
Suppose that M is Dirichlet at the end-point b in L2

w[a, b), and that at least one 
°f P1* q? w is not in L[a, b); then M is strong limit-point at b in l3w[a, b). 

Proof. See section 3 below. 
The first theorem depends essentially on the conditions which prevail when the 

weight coefficient w, which belongs to LIoc[a, b), is not in L[a, b). 

Theorem 1. Let the coefficients p, q and w satisfy the basic conditions (i) to (iv) 
of (1.1). Suppose that 

(1) there exists a non-negative number A such that 

(2.1) q(x) + A w(x) ^ 0 (almost all x e [a, b)) 

(2) w£L[a,b). 
Then M is Dirichlet and strong limit-point at b in l}w[a, b). 

Proof. See section 4 below. 

The second theorem gives a result whether w belongs to or does not belong to 
L[a, b); however, in view of theorem 1, the result is more significant when w e L[a, b). 

Theorem 2. Let the coefficients p, q and w satisfy the basic conditions (i) to (iv) 
o / ( l . l ) . Let q±[a, b) -> R+ be defined by 

U * ) = * M * ) I ± «(*)} (allxe[a,b)). 
Suppose that 

(1) there exist a positive number k and a non-negative number A such that 

(2.2) p(x) q+(x) ^ fc2 > 0 and q_(x) g A w(x) 

both hold for almost all x e [a, b), and 
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(2) w(x) exp 2fc p"1 dx = 00 . 

Then M is Dirichlet and strong limit-point at b in l}w\a, b). 

Proof. See section 5 below . 

No tes to theorem 2. (i)The condition (2.2) on q_ can be relaxed, see Kalf [11, 
page 199], but the requirement given here is appropriate for this paper. 

(ii) Note that (2) implies at least one of w and p'1 is not in L[a9 b). 

(iii) We shall show in an example that k > 0 cannot be replaced by k = 0; if 
k = 0 then we may have the limit-circle case at b. 

Corollary (to theorem 2). Let b = oo and p(x) = 1 for all x e [a, oo); let q and w 
satisfy conditions (iii) and (iv) of (1.1). Suppose that 

(1) q(x) —̂  k2 > 0 (almost all x e [a, OO)) 

(2) \ezkxw(x)dx = oo . 

Then the differential expression —y" + qy on [a, oo) is Dirichlet and strong 
limit-point at oo in L2

w[tf, oo). 

Proof. This follows at once from theorem 2. 

This corollary is useful in examples. 

3. PROOF OF THE LEMMA 

Since the coefficients p9 q and w are real-valued on [a, b) it is sufficient to prove 
that (1.10) holds, i.e. lim pg' .f = 0, for all real-valued f, g in A. 

b 

Given that M is D at b it follows from the Dirichlet formula (1.7) that lim pg' .f 
b 

exists and is finite. Suppose then M is not SLP at b; then there exist real-valued f 
and g in A with 

(3.1) l i m ( W 7 ) ( x ) = / i * 0 . 
x-*b 

Without loss of generality we can suppose that \i > 0, and then, for some a e [a, b)9 

f(x) > 0 for all x e [a, b). This implies pg' > \\x\f in some [a, b)9 and so |Pf'g'| > 
> i."|/'|// o n [a> &)• Integrating over [a, b] 

(3.2) [ "\pf'g'\ = ifi [' \f\jf = y\ f'/'j!t| = Mm (M) - In (/(a))|. 
J a J a J a 
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Since M is D at b it now follows, for d, D with 0 < d < D < oo, that 

(3.3) 0 < d = f(x) = D < oo (x e [a, &)) . 

Suppose now either qoxwe L[a, b); then since both |q | | / |2 and w|/|2 e L[a, b) 
we have a sequence {/Jn: n = 1, 2,...} with {p„} --> ft and {/(/?„)} -> 0 as n -> oo. 
However this contradicts (3.3) and hence (3.1); thus M must be SLP at b. 

Suppose now both q and w 6 L[a, b) then from the conditions of the lemma 
p"1 $ L[a, b). We have, since M is D at b, 

fb (*b 

P"V|2= PW\ 
J a J a 

2 < 00 

and so for a sequence {/$„}, as above, we have {(pg') (/?„)} -> 0 as n -> oo. But from 
(3.3) this implies {(pg'f) (P„)} -> 0 as b -> oo and so, from (3.1), it follows that 
ix = 0. This is a contradiction and again M must be SLP at b. 

4. PROOF OF THEOREM 1 

Again it is sufficient to prove that M is D at b by proving that (1.11) holds for 
all real-valued fe A. 

From the Dirichlet formula (1.7) and (1) of (2.1) 

(4.1) [\pf2 + (q + Aw)f2} = pf'ff + [Pw . w"1 M [ / ] / + A fw / 2 

J <x \<x J « J a 

where the integrand on the left is non-negative on [a, b). Suppose the integral on 
the left tends to oo as /? -> b —; then, since / e A, both integrals on the right remain 
finite and so lim pff = oo. Hence, for some a e [a, b), pff > 0 on [a, b]\ from 

(ii) of (1.1) it then follows that / ' / > 0 almost everywhere on [a, b), i.e. f2 is mono-
tonic increasing on [a, b). However / e L2

w[a, b) and, from (2) of (2.1), w$L[a, b) 
and so there is a sequence {/?„} -> b with {/(/?„)} -» 0. This gives a contradiction 
and the integral on the left of (4.1) must remain finite as j5 -> b— and this implies 
that M is D at b in L2„[a, b). 

Finally M is SLP at b in L2
w[a, b) from the lemma of section 2. 

5. PROOF OF THEOREM 2 

We begin by noting that from the second part of (2.2) 

- q _ _r —Aw, i.e. # = q+ — q_ = —Aw, i.e. g + Aw = 0 

on [a, b); hence condition (1) of theorem 1 is satisfied. If now w £ L[a, fc), and cer-
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tainly (2) of theorem 2 then holds, all the conditions of theorem 1 are satisfied and M 
is D at b. Thus without loss of generality we can suppose that 

(5.1) weL[a9b) and p'^Lfy, b) 9 

the latter to hold in order to ensure that (2) is satisfied. 
As before it is necessary to prove only that (1.11) is satisfied for all real-valued f 

in A. From Dirichlet's formula (1.7) we obtain, using also q = q+ — q~> 

(5.2) [ V 2 + Q+f2} = PEfr+ fw.w-1M[/]/+ fa_/2 

J a \a J a J a 

valid for all x e (a9 b). Using the second part of (2.2) and withfe A, it follows that 
both integrals on the right of (5.2) are bounded as x -> b. If the integral on the left, 
which has a non-negative integrand, is unbounded as x -» b then (Pf'f) (x) -> oo 
as x -> b. Thus for some p > 0 and for y e (a, b) we have pf'f > p > 0 on (y9 b); 
without loss of generality we may assume f(x) > 0 for all x e (y9 b). Hence f'f ^ 
^ pp'1 for almost all x e (y, b) and so f2, and also f, is monotonic increasing on 

(.V, b). 
Integrating over [y, x] gives 

(5.3) f(x)2
 = 2p | V ' + f(y)2 ^ 2p f V 1 (x e [y, b)) . 

Thus from (5.1) it follows that limf = oo. Now choose a e (y, b) so that f(a) > 1; 
b 

then from (5.3) we obtain 

^ " - i i P " 1 } " 1 {x€~«>b»-
Squaring this result and integrating over [a, /?] gives 

(5.4)
 4 4 ' w v 4 ' M , v r d * = 

valid for all ft e [a, b). 
Returning to (5.2) we obtain, on using lab ^ a2 + b2 for a, b ^ 0 and the first 

of (2.2) 

2k f / ' / = 2 !X(pq+Y'2f'f ̂  Hpf'2 + q+f2} £ (pf'f)(x) + 0(1) 
J a J a J a 

valid for all xe(a9 b). Here O(-) is the standard notation. Integrating the first term 
gives 

(5.5) kf(x)2^ (pf'f) (x)+ 0(1) (xe(a,b)). 
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Now let x 6 (a, b), divide (5.5) by (pf4) (x) and integrate over [a, /?] to give 

(5.6) fc[V2r ^ [Vr3 + o((\PfT1)^/(«)-2 + 0(1) 

for all p ~ [a, ft], on using (5.4). 
Now divide (5.5) by pf2 and integrate over [a, /?] to give for all x > a (recall 

/ ( * ) > / ( * . ) > . ) 

/c | V l ik ln(/(x)) - In (/(a)) + o Q V * ) - 1 ) ^ M / W ) + I-

where, from (5.6), L is a positive constant. Taking exponentials gives, for a positive K, 

e x p j ^ j V 1 ! £ * / ( * ) (xe[a,fc)) 

and squaring and integrating over [«, /?] 

f w{x) expllk [ V 1 ! dx ^ K2 f w(x)f(x)2 dx 

valid for all /? e [a, b). Since fe L2
w[a, b) this last result is a contradiction on con­

dition (2) of theorem 2. 
Thus both pl/2f' and q+

/2feL2[a, b). From the second part of (2.2) it follows 
that qlJ2fel}[a, b) for allfe A. Hence, when (5.1) is the case, we also have M is D 
in L2

w[a, b). 
Finally M is SLP at b in L2

w[a, b) from the lemma of section 2. 

6. SOME EXAMPLES 

We discuss here only two examples. Reference to other examples should be made 
to Kalf [11], and Everitt and Wray [9, sections 3 and 5]. 

The first example is not covered by the results in [9] or [11] but does come under 
the corollary to theorem 2. This example also illustrates, in one sense, the best 
possible nature of the result in theorem 2 in that the lower bound fc, for the product 
pq+9 cannot be improved. Let a = 0, b = oo p(x) = 1 q(x) = v2 w(x) = e~2x 

(x G [0, oo)) where the number v = 0. We see that all the conditions of the corollary 
are satisfied if we take k = v and v ̂  1. The resulting differential equation (1.2) 
in this case is D and SLP at oo in I?w[0, oo). Explicitly we have 

-/'(*) + v 2 y(x) = Ae"2x y(x) (x e [°> °°)) 
which has solutions 2v(e~xvX) where Zv is any Bessel function of order v. When v 
is not a positive integer we have solutions 
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J,(e-y*) ~ K(v, X) e~v* , J- , (e-y*) - L(v, A) ev* 

as x -+ oo; when v = 1 we have 

Ji(e~V*) - X(A) e~* , Yfe-'y/X) ~ L(A) e* 

again as x -> oo. These results show that this example is LP at oo in L2

W[0, oo) 
when v _ 1, and LC at oo in L2

W[0, oo) when 0 ^ v < 1. The requirement v ^ 1 
for the corollary to hold is seen to match the actual classification of the equation. 

The second example is 

a = 0, b = oo p(x) = 1 q(x) = k2

 = 0 w(x) = x" 4 exp [-2X""1] . 

This example is regular at 0 but singular at oo. The conditions of the corollary are 
satisfied as long as k > 0, but not when k = 0. This example also comes under the 
theorem in [11]; again the conditions required in [11] cannot be satisfied when k = 0. 
It is not known if solutions of the resulting differential equation can be obtained 
explicitly in terms of known transcendental functions when k > 0; this would seem 
unlikely. However when k = 0 Halvorsen [10] has shown that solutions may be 
obtained in terms of Bessel functions of order zero; in fact independent solutions 
are 

x J0(exp [ - x _ 1 ] y/X) , x Y0(exp [-x" 1 ] JX) , 

An analysis then shows that the equation is LC at oo in L2

W[0, oo), i.e. when k = 0, 
When k > 0 both [11] and this paper show that the equation is D and SLP at oo in 
L2

W[0, oo). See also Everitt and Halvorsen [8]. 

1. THE TITCHMARSH-WEYL m-COEFFICIENT 

The results in this paper have applications to the theory of the rn-coefficient for 
the differential equation (1.2). See Bennewitz and Everitt [2, section 8] and the 
forthcoming paper [1] which is a revision of the work in [2], 
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